
Bits
QUIC Interim, New York, September 2018

Martin Thomson



Goal

2

Resolve what to do with the first octet

Assume that the spin bit discussion will result in

1. no use of bits
2. a single bit (spin)
3. 3 bits (spin+VEC)

...and that no other outcome is possible

Plan for all possible outcomes:

discuss proposals, suggest amendments, agree in principle



Constraints Review: RFC 7983 Mux

High Priority
STUN: 0b0000.00xx (0-3)

Desirable
SRTP: 0b10xx.xxxx (192-255)
DTLS: 0b0001.01xx, 0b0001.1xxx, 0b001x.xxxx (20-63)

Take it or leave it
TURN Channels: 0b0100.xxxx (64-79)
ZRTP: 0b0001.00xx (16-19)

3

0-3 STUN

16-19 ZRTP

20-63 DTLS

64-79 TURN Channel

128-191 SRTP



Constraints (and Wants) Review

Type in the clear (it determines key)

Packet number and key phase encrypted

Greasing

Either we use the bits or they will gain new meaning

Both use and encrypt is best, but either alone might work 

Fixed values are worst, but might be necessary

4



Proposal: Common Features

Move packet number length encoding into the first octet
2 octets can represent 1-4 octets of packet number

Put it alongside key phase

Encrypt both

Requires packet number protection key to not change with 
key update (simple change)

That means that we have 4 bits free

5

0/1 K P P



Proposal: Long Header

No spin bits here, so one proposal*:

Problem: some unused values (or 4 codepoints for each type)

We only need two bits for type so we might encrypt some 
zero/randomized bits instead:

Suggestion: adjust to match the short header decision

6

1 T T T T K P P

1 T T Z/R Z/R K P P



Long Header Types

A. Peer-to-peer probably won’t need Retry and 0-RTT

Avoid SRTP by reallocating Retry and 0-RTT so that they 
conflict with 0b10xx.xxxx

B. #1655 proposes simpler identification of Initial and 0-RTT

That proposes putting Initial and 0-RTT on 0b11xx.xxxx 
so that it is easier to identify packets with server-chosen 
connection IDs (packet[0] < 0xfe)

But wait! packet[0] < 0xfe doesn’t work now anyway

7

https://github.com/quicwg/base-drafts/issues/1655


Proposal: Long Header Types

Retry: 0b101x.xxxx

0-RTT: 0b100x.xxxx

Initial: 0b110x.xxxx

Handshake: 0b111x.xxxx

define hasServerChosenCid(packet):

return packet[0] & 0xa0 != 0x80

8



Short Header with 3 Spin Bits (Spin+VEC)

Proposal: Fix one bit and avoid STUN, DTLS, and ZRTP:

That is restrict this to the range from 64-255

Risk: 0-63 could be unusable for QUICv2

Risk: unused values for type in long header if this matches

Suggestion: allocate 4 codepoints for each type

9

0 1 S VEC VEC K P P



Retry and 0-RTT: 0b10aa.axxx

… with aaa shuffled and split between the two

Initial and Handshake: 0b11bb.bxxx

… with bbb shuffled and split between the two

Proposal: Long Header Types (4-bit version)

10



Short Header with 1 Spin Bit (No VEC)

Same design as previous, but with more bits encrypted

If we cared about TURN channels we could do this

11

0 1 S Z/R Z/R K P P

0 1 1 S Z/R K P P



Short Header with 1 Spin Bit (No VEC)

Same design as previous, but with more bits encrypted

If we cared about TURN channels we could do this

I haven’t heard from anyone that cares about TURN channels

12

0 1 S Z/R Z/R K P P

0 1 1 S Z/R K P P



Short Header with No Spin Bit

Sure, we could encrypt another bit, but then short and long 
can’t be the same, which is annoying, and a separate 
greasing mechanism is also annoying

So maybe TURN channels can get a pass

Cost here is more exposure to ossification (0-95)

13

0 1 1 Z/R Z/R K P P


