
Flow Control Gotchas
QUIC Interim 1809



Flow Control is great!

…so long as all the streams and all the bytes are independent.



How to Deadlock With Two Streams

• Interpretation of Stream B 
depends on data from 
Stream A

• Flow control prevents data 
on Stream A from being 
sent

• Lack of progress on Stream 
B prevents new flow control 
credit from being issued to 
Stream A

Permitted by FC

Buffered in transport



Cross-Stream Dependencies and Header Compression

● QCRAM had an encoder stream for recovery only

○ Dependency on subsequently transmitted data

● QPACK uses encoder stream for all updates

○ Dependency on previously transmitted data

○ …unless flow control blocks sending in the first place



How to Deadlock with One Stream

Length (i) Read 5 bytes (max varint + 1)

Find Length and Type fields in 

next frame

Type



How to Deadlock with One Stream

Read 5 bytes (max varint + 1)

Find Length and Type fields in 

next frame

Are Length bytes available?

• Yes – read and parse

• No – wait

Query bytes 

available

Length (i)

Type



How to Deadlock with One Stream

Read 5 bytes (max varint + 1)

Find Length and Type fields in 

next frame

Are Length bytes available?

• Yes – read and parse

• No – wait

Query bytes 

available

Flow control window < Length!

Length (i)

Type



Ways to solve this

● Don’t do that!
○ Application should always keep reading; this isn’t what flow control is 

for!

○ …except that becomes a memory consumption DoS, and protecting 

from that is what flow control is for

● …?



Specific Changes

● Transport

○ Need a general discussion of flow control deadlocks, warning to application 

layer protocols

● HTTP
○ Some frames can be streamed (DATA) while others need the entire payload 

(HEADERS)

○ Need to coordinate maximum size of unit-processed frames and minimum size 

of stream flow control window

● QPACK
○ Implementations limit writing to encoder stream to immediately-available flow 

control window

○ Probably need text in the draft warning implementers


