
Retry, Retry, Retry
QUIC Interim, New York, September 2018

Martin Thomson

Connection ID Authentication

2

NEW_CONNECTION_ID is authenticated (good)

Handshake packets are sort-of authenticated (probably OK)

Initial and Retry packets aren’t authenticated (hmm)

So, what if we can modify the connection ID?

Well, we can maybe get the receiver to interpret it as part of
the packet number:

Destination Connection ID
(Length ???)

PN Len
(1-2 bit)

Packet Number
(7/14/30 bit)... ...

Modifying Initial packets

3

Initial from the client

The Source Connection ID determines routing; client will
drop the response if it is changed

The Destination Connection ID determines keys; ditto

Initial from the server is right next to Handshake

Maybe can change Source Connection ID, but would need
to modify Handshake packets also; probably not doable

(Not particularly satisfying answer here, more later)

Modifying connection ID with Retry

4

SC

Initial (S0,C1)

Initial (C1,M0), Handshake (C1,M0)

M

Retry (C1,M0,T)

Initial (M0,C1,T)

Credit: kazuho
Assumption: the choice of destination connection ID by
the client affects the server choice of connection ID

Initial (M0,C1)

T is removed so
server doesn’t know
retry happened

Unauthenticated Retry possible

Some servers want to deploy boxes that screen for DoS
and send Retry without close coordination

Authentication of Retry possible

If Retry was sent by the server itself, or it has a closer
relationship with the DoS mitigation box

Requirements

5

No implicit or transitive authentication possible

The best way to authenticate this sort of thing is to take the
data and mix it in the key derivation

Checks are implicit: if you fail to account for the
information the handshake fails

You don’t have to send anything twice

That relies on both peers remembering things, so no go here

6

Authenticating Retry

Simplest solution here is to add something to transport
parameters

1. the entire sequence of Retry packets
= probably too expensive

2. a hash of Retry packets
= only works if the server knows the contents of the
Retry, so no validation if Retry is sent by an independent
DoS mitigation box or another server instance

3. an excerpt of Retry packets
= requires that server help itself

7

Client sends the first N octets of the token from Retry in its
transport parameters

Servers that are stateful can use a random value and check
that it is the right value

Otherwise, include a MAC over information that can be
checked: the remainder of the Retry token, the connection
IDs from the Retry, and the client address

Server can check the MAC and detect tampering (or not)

The MAC inputs need to have low P(collision) or copy-paste!

Servers: self-service validation w/ excerpt

8

Clients: authenticate only connection ID

Proposal: Include the server’s final choice of connection ID in
the server transport parameters

9

Changes

 select (Handshake.msg_type) {
 case client_hello:
 QuicVersion initial_version;
 opaque retry_excerpt[32];

 case encrypted_extensions:
 QuicVersion negotiated_version;
 QuicVersion supported_versions<4..2^8-4>;
 };
 opaque final_connection_id<0..18>;
 TransportParameter parameters<22..2^16-1>;
 } TransportParameters;

Details for later are size (32, less, more) and whether we
require retry tokens to be 32 octets minimum to support this

10

Problem: Multiple Retries

11

The excerpt method doesn’t work if the server sends
multiple retries

It relies on the connection ID and token being taken from
elsewhere in the packet - the client doesn’t repeat earlier
values

So...

Proposal: One Retry Only

TCP only offers one chance, this is a new feature in QUIC

No more rule about changing connection IDs on Retry

Easier and cheaper to authenticate Retry

Easier and cheaper to authenticate connection IDs

Cost is obvious: only one layer of DoS mitigation allowed

12

