
Spin bit and beyond
@ Orange

A.Ferrieux, I.Hamchaoui

1

Why do we care ? (1/2)
● Encryption obviously shines in key QUIC goals

● Requesting measurement bits sounds like an uphill battle…

● ... and yet we're here because we 're scared

2

Why do we care ? (2/2)
● ... scared to lose a cheap and efficient tool in everyday network

troubleshooting: TCP headers

● You may not believe us because you think we have alternatives; we don't !

3

It's a less than ideal world
● Our networks include legacy hardware

● Responsibility boundaries come into play

● ... but still, why don't we manage with local inspection ?

4

Alternatives that don't work (1/3)
● Drop counters on switches and routers ?

○ often hard to reach (could be a leased network)

○ often inaccurate (don't include internal fabric overflows)

○ hard to correlate finely with other events

○ coarse granularity (per interface)

5

Alternatives that don't work (2/3)
● Two-point segment bracketing ?

○ very expensive

○ cannot run continuously without extreme precaution

○ packet correlation may be hard

6

Alternatives that don't work (3/3)
● Using only active probes ?

○ moving them around is very expensive

○ reproducibility is not guaranteed

○ cannot be inserted in the middle of tunneled segments (e.g. GTP in
mobile networks) or pure-L2 paths

7

So, what does work ?
● Dichotomy on loss and latency is the only efficient tool !

○ with TCP headers, we get RTT and loss contributions on either side of a
capture point

○ we then quickly home in on the
offending box

○ this still works with multiple
offenders (which happens)

8

Not a toy ! (1/3)
● We need to do this dichotomy very frequently:

○ ever-evolving networks

○ new affiliates

○ problems outside our responsibility => better locate them!

9

Not a toy ! (2/3)
● ... so we invest hardware and manpower into it:

○ passive probes doing traffic capture and real-time analysis

○ extensive deployment of capture points (optical taps and aggregators)

10

Not a toy ! (3/3)
● ... and the ROI is good: we solve real problems:)

○ misbehavior of core components under load

○ access network bottlenecks

○ "not guilty": loss or RTT proven to be in another AS

11

Doing the same with QUIC ?
● We have a proposal fitting into the 3 Reserved bits in draft-14 (1st octet of

short headers):

 0K110SQE

 S = Spin bit => gives half-RTT on either side of the capture point

 Q = sQuare sequence bit => gives upstream loss

 E = E2E bit => gives end-to-end loss, and downstream by difference

=> the full dichotomy lives on!

12

How does it work ? (1/3)
● S = Spin bit => gives half-RTT on either side of the capture point

○ see draft-trammel-quic-spin03

○ just the spin bit, not the VEC (we need the other 2 bits)

○ see Marcus Ihlar's heuristics to do without VEC

13

How does it work ? (2/3)
● Q = sQuare sequence bit => gives upstream loss

○ proposed by Kazuho during early discussions on loss measurement

○ principle:

■ a square signal of a well-known fixed number of packets
■ the observer counts packets
■ any difference with the well-known period indicates upstream loss

14

How does it work ? (3/3)
● E = E2E loss bit => gives end-to-end loss, and downstream by difference

○ refinement of the loss bit idea:
■ receiver keeps track of recent losses
■ one outgoing packet marked with E=1 ⇔ one loss identified earlier
■ keep marking E=1 until all recent losses reported
■ loss rate increases => more ACKs => more packets to carry E=1

=> in most cases, the total number of E=1 equals the E2E loss count,
and they are reported rather timely

=> the complexity cost for the endpoints is very low

15

Demo
● Implemented in PicoQuic:

https://github.com/private-octopus/picoquic/compare/master...ferrieux:master

● Online analysis tool available, just upload your pcap:

https://193.252.113.227/cgi-bin/quicspin.cgi

● Unit tested in many scenarii on real networks.

16

https://github.com/private-octopus/picoquic/compare/master...ferrieux:master
https://193.252.113.227/cgi-bin/quicspin.cgi

Demo: little loss,
RTT buildup

17

Demo: loss above,
no RTT buildup

18

Demo: loss below,
no RTT buildup

19

Demo: loss on both sides,
no RTT buildup

20

What next ? (1/2)
● Plan A: a FUT with partners providing Browser and Server

○ assumes these 3 bits remain available as per the QUIC spec
○ will be run on a production network with multiple capture points
○ will allow the exact same dichotomy as today with TCP, on the full path

○ OK with non-rooted devices
○ requires to find partners

21

Plan A = full path ; modified browsers + servers

22

What next ? (2/2)
● Plan B: a FUT with client system patch and middlebox

○ assumes nothing, works with non-IETF gQUIC (L3 header “trick”)
○ LD_PRELOAD or iptables module on the client (Android or Linux)
○ iptables module on the middlebox
○ will be run on the same production network
○ will allow the exact same dichotomy as today with TCP, restricted to the

segment between client and middlebox.

○ vanilla Chrome and Youtube clients talking to vanilla Google servers
○ rooted devices + specific config to go through middlebox
○ small network segment

23

Plan B = small segment ; vanilla Chrome/Youtube

24

Annex: End-to-end loss

25

