
HTTP/3
Open Design Issues

Errors and Error
Handling

#2718 –
Truncated
Stream
Handling is
Aggressive

Spec says:
These streams carry frames related to the request/response (see
Section 4.1). When a stream terminates cleanly, if the last frame on
the stream was truncated, this MUST be treated as a connection error
(see HTTP_MALFORMED_FRAME in Section 8.1).

 Is a connection error appropriate, or should this be relaxed?

Editor says: Yes, this is an error. Close with no action.

https://github.com/quicwg/base-drafts/issues/2718

#2711 – Relax
prohibition on
server-initiated
bidirectional
streams

Spec says:
HTTP/3 does not use server-initiated bidirectional streams; clients
MUST omit or specify a value of zero for the QUIC transport
parameter initial_max_bidi_streams.

 Extensions might want to use bidirectional streams

 Current text adds an extra RTT to extensions wanting to do this
 Or send a MAX_STREAMS frame immediately

 No specified enforcement (server doesn’t reject connections that
allow server to open streams)

Editor says: Change this to a SHOULD omit/zero unless an
extension is being offered

https://github.com/quicwg/base-drafts/issues/2711

#2699 – Specify
handling of QUIC
SERVER_BUSY
connection
failures

Transport spec says:
If a server isn’t currently accepting any new connections, it SHOULD
send an Initial packet containing a CONNECTION_CLOSE frame with
error code SERVER_BUSY.

HTTP spec says:
[When using Alt-Svc,] Connectivity problems (e.g. firewall blocking
UDP) can result in QUIC connection establishment failure, in which
case the client SHOULD continue using the existing connection or try
another alternative endpoint offered by the origin.

 Is this sufficient?

 Does the solution to this belong in HTTP/3 or in QUIC?

Editor says: Method for selecting candidate ports to connect to
should describe what happens when a connection to a candidate
fails. Failure error code is irrelevant.

https://github.com/quicwg/base-drafts/issues/2699

#2551/#2662 –
Replace
MALFORMED
_FRAME with
specific error
codes

Spec says:
HTTP_MALFORMED_FRAME (0x01XX):

An error in a specific frame type. If the frame type is 0xfe or less, the
type is included as the last byte of the error code. For example, an
error in a MAX_PUSH_ID frame would be indicated with the code
(0x10D). The last byte 0xff is used to indicate any frame type greater
than 0xfe.

PR says:

Editor says: Let’s do this.

• HTTP_BAD_FRAME_SIZE
• HTTP_INVALID_PRIORITY
• HTTP_DUPLICATE_SETTING
• HTTP_LIMIT_EXCEEDED

(expanded definition)

• HTTP_DUPLICATE_PUSH
(expanded definition)

• HTTP_PUSH_ID_REDUCED
• HTTP_MALFORMED_FRAME

https://github.com/quicwg/base-drafts/issues/2551
https://github.com/quicwg/base-drafts/pull/2662

#2516 –
Semantics of
MAX_HEADER
_LIST_SIZE

Spec says:
An HTTP/3 implementation MAY impose a limit on the maximum size
of the header it will accept on an individual HTTP message;
encountering a larger message header SHOULD be treated as a
stream error of type HTTP_EXCESSIVE_LOAD. If an implementation
wishes to advise its peer of this limit, it can be conveyed as a number
of bytes in the SETTINGS_MAX_HEADER_LIST_SIZE parameter.

 Many implementations in HTTP/2 don’t actually enforce the
advertised value

 Inconsistently enforced limits don’t provide value

 Not clear when this is intended to be used

Editor says: This is a shortcut; advertise the point at which you
would drop an incoming message for excessive size (which might be
never). Next hop can early-reject messages on your behalf.

https://github.com/quicwg/base-drafts/issues/2516

#2498 –
Behavior on
out-of-range
settings

QPACK says:
SETTINGS_QPACK_MAX_TABLE_CAPACITY (0x1):

An integer with a maximum value of 2^30 - 1. The default value is zero
bytes. […]

SETTINGS_QPACK_BLOCKED_STREAMS (0x7):

An integer with a maximum value of 2^16 - 1. The default value is zero.

HTTP/3 says:
crickets

 QPACK treats a “maximum” value for a setting as a general
concept

 HTTP/3 defines no error for an out-of-range setting

Editor says: Expand the definition of HTTP_LIMIT_EXCEEDED

https://github.com/quicwg/base-drafts/issues/2498

#2412 – Can
MAX_PUSH_ID
go backward?

HTTP/3 says:
A MAX_PUSH_ID frame cannot reduce the maximum Push ID; receipt
of a MAX_PUSH_ID that contains a smaller value than previously
received MUST be treated as a connection error of type
HTTP_MALFORMED_FRAME.

QUIC says:
Loss or reordering can cause a MAX_STREAMS frame to be received
which states a lower stream limit than an endpoint has previously
received. MAX_STREAMS frames which do not increase the stream
limit MUST be ignored.

 MAX_PUSH_ID is sent on the control stream, where there is no
loss or reordering

 If HTTP/4 uses QUIC DATAGRAMs to carry these frames, obviously
this changes.

 Reneging is a correctness violation

Editor says: Close with no action

https://github.com/quicwg/base-drafts/issues/2412

#2410 –
Import rules on
“malformed
requests” from
RFC7540

HTTP/2 says:
Intermediaries that process HTTP requests or responses (i.e., any
intermediary not acting as a tunnel) MUST NOT forward a malformed
request or response. Malformed requests or responses that are
detected MUST be treated as a stream error (Section 5.4.2) of type
PROTOCOL_ERROR.

For malformed requests, a server MAY send an HTTP response prior to
closing or resetting the stream. Clients MUST NOT accept a
malformed response.

HTTP/3 says:
crickets
(though see some of DaanDeMeyer’s PRs for specific varieties of malformed requests)

Editor says: Let’s do this.

https://github.com/quicwg/base-drafts/issues/2410

PRIORITY and
Prioritization

#2697 –
SHOULD use
PRIORITY

 HTTP/2 says how to convey priorities
 Some implementations, server and client, don’t implement it

 HTTP/3 says how to convey priorities
 Should the spec call implementation a SHOULD?

Editor says: We can recommend all we want, sure.

https://github.com/quicwg/base-drafts/issues/2697

#2502/#2690
– Priority
inversion from
reordering

HTTP/3 says:
Due to reordering between streams, an element can also be prioritized
which is not yet in the tree. Such elements are added to the tree with the
requested priority.

When a prioritized element is first created, it has a default initial weight of
16 and a default dependency. Requests and placeholders are dependent
on the root of the priority tree….

 Editorial: Needs to say that a dependency on a stream that doesn’t
exist yet causes that parent to be added to the tree

 Problem: These newly-added streams depend on the root, which
makes them the most important things in the tree!

PR says:
The tree also contains an orphan placeholder. This placeholder cannot be
reprioritized, and no resources should be allocated to descendants of the
orphan placeholder if progress can be made on descendants of the root.
[…]
When a prioritized element is first created, it has a default initial weight of
16 and a default dependency. Requests and placeholders are dependent
on the orphan placeholder….

Editor says: Briefly under-prioritized is probably better than briefly
over-prioritized

https://github.com/quicwg/base-drafts/issues/2502
https://github.com/quicwg/base-drafts/pull/2690

???/#2700 –
Strict Priorities

PR proposes changes to the priority scheme:

 Streams cannot depend on other streams; only on placeholders

 Elements have both a priority and a dependency
 Bandwidth allocated to a placeholder is used to service the highest-

priority child

 Children of equal priority are handled:

 One at a time in any order if no weight is set

 Weight-based allocation of bandwidth if weight is set

 50/50 split of bandwidth between unweighted and weighted groups if
mixed

Editor says: Interesting. Is this in scope?

https://github.com/quicwg/base-drafts/pull/2700

Structural Changes

#2678 – Use
unidirectional
streams for
everything!

The control stream carries:

 SETTINGS (only once, must be first)

 PRIORITY (ordered amongst themselves)

 MAX_PUSH_ID (ordered amongst themselves)

 CANCEL_PUSH (unordered)

 GOAWAY (ordered amongst themselves / unordered)

Since there are no ordering requirements cross-type, these could be
separate unidirectional streams so that lost packets containing one
don’t block others.

#2418 separately proposes using unidirectional streams for
MAX_PUSH_ID

Editor says: Big change need big reason.

https://github.com/quicwg/base-drafts/issues/2678
https://github.com/quicwg/base-drafts/issues/2418

#2526 –
PUSH_ID
frame

 SETTINGS and PRIORITY create precedent for frames which can
only (or MUST) be the first frame on a stream

 Push ID is carried as an extension of the unidirectional stream
header on push streams, then frames begin

 Would be more consistent as a PUSH_ID frame

Editor says: 6 == (12/2)

https://github.com/quicwg/base-drafts/issues/2526

#2632 –
Symmetric
GOAWAY

HTTP/3 says:
The GOAWAY frame … carries a QUIC Stream ID for a client-initiated
bidirectional stream encoded as a variable-length integer.

The GOAWAY frame indicates that client-initiated requests on lower
stream IDs were or might be processed in this connection, while
requests on the indicated stream ID and greater were rejected.

 Does not indicate anything about client-initiated unidirectional
streams

 Client cannot indicate to server which push / extension streams
were processed before end of connection

Editor says: Extensions can define their own shutdown
mechanisms if needed. Close with no action.

https://github.com/quicwg/base-drafts/issues/2632

Relationship to TCP,
Alt-Svc, etc.

#2488 –
Embed
address
validation
token in Alt-
Svc

 HTTP/3 defines a QUIC version-negotiation Alt-Svc extension
which can save a round trip

 Providing the token for the QUIC Initial packet could also save a
round trip

Editor says: Doesn’t need to be in the HTTP/3 spec.

(Of course, neither does the other one, and mix/match of unknown
Alt-Svc extensions gets messy.)

https://github.com/quicwg/base-drafts/issues/2488

#2439 – http://
URIs over
HTTP/3

RFC 8164 says:
For various reasons, it is possible that the server might become
confused about whether requests' URLs have an "http" or "https“
scheme (see Section 4.4). To ensure that the alternative service has
opted into serving "http" URLs over TLS, clients are required to
perform additional checks before directing "http" requests to it.

HTTP/3 says:
crickets

 Should HTTP/3 require similar opt-in, or should it mandate proper
handling of scheme?

Editor says: You’re implementing a new protocol – get it right.

https://github.com/quicwg/base-drafts/issues/2439

#2223 –
Coalescing
rules

HTTP/2 says:
A connection can be reused as long as the origin server is authoritative
(Section 10.1). For TCP connections without TLS, this depends on the host
having resolved to the same IP address.

For "https" resources, connection reuse additionally depends on having a
certificate that is valid for the host in the URI. The certificate presented by
the server MUST satisfy any checks that the client would perform when
forming a new TLS connection for the host in the URI.

HTTP/3 says:
The client MAY send any requests for which the client considers the server
authoritative.

An authoritative HTTP/3 endpoint is typically discovered because the
client has received an Alt-Svc record from the request’s origin which
nominates the endpoint as a valid HTTP Alternative Service for that origin.
As required by [RFC7838], clients MUST check that the nominated server
can present a valid certificate for the origin before considering it
authoritative. Clients MUST NOT assume that an HTTP/3 endpoint is
authoritative for other origins without an explicit signal.

Editor says: Pending an updated definition of authority from http-core.

https://github.com/quicwg/base-drafts/issues/2223

#253 – HTTP/3
without Alt-Svc

Discussion in Tokyo / Prague:

 Resource identification is increasingly distinct from the actual
retrieval server / port / protocol (URIs vs. URLs)

 Any client can ask any server for any resource over any connection
 Client has to decide whether to trust server’s answer for that

resource (if not, don’t ask or discard response)

 Server has to decide whether it’s willing to answer requests for that
resource (if not, 421)

 H2/H3 explicitly carry scheme/authority/path to enable this
behavior

 Client needs algorithm to derive candidate server connections
from URI

 Alt-Svc expands the set of candidates / hints at server preferences

Where does this text belong?

