RATS Architecture & Terminology

—RECAP—

Henk Birkholz {henk.birkholz@sit.fraunhofer.de}
Ned Smith {ned.smith@intel.com}

IETF Virtual Interim, June 20th, RATS WG
Current RATS Architecture: **Actors**

1. **(SCE)** Supply Chain Entity (Note: 1-n supply chain entities per Device are possible)
2. **(I1) Provision DeviceID & Bind AtAs to Device**
3. **(I2) Publish Attestation Assertions (AtAs)**
 - 2a Storage and Distribution
 - 2b Remote Attestation Service (Note: 0-n RA-Services per SC(E) are possible)
4. **(I3) Attestation Evidence Conveyance (EC)**
 - (Note: Only Evidence containing verifiable AtAs are conveyed)
 - 1a TEE, eSE, or similar RoT
5. **(I4) Attestation-Result Conveyance (RC)**
 - 1b

- **Enforce Trustworthiness Policy**
- **2a**
- **2b**
Current RATS Architecture: Roles

Roles

Attester
(Note: 1-n supply chain entities per Device are possible)

Asserter

(I1) Provision DeviceID & Bind AtAs to Device

(I2) Publish Attestation Assertions (AtAs)

Verifying Party
(Note: 0-n RA-Services per SC(E) are possible)

Verifier

(I3) Attestation Evidence Conveyance (EC)
(Note: Only Evidence containing verifiable AtAs are conveyed)

(I4) Attestation Result Conveyance (RC)

Relying Party
Enforce Trustworthiness Policy

1a

1b

2a

2b

3

(11) Provision DeviceID & Bind AtAs to Device

(12) Publish Attestation Assertions (AtAs)

Storage and Distribution

(13) Attestation Evidence Conveyance (EC)
(Note: Evidence = AtAs to device binding using a RoT key)
(I1) **Provision DeviceID & Bind AtAs to Device**

(Out of Scope)

(I2) **Publish Attestation Assertions (AtAs)**

(Out of Scope)

(I3) **Attestation Evidence Conveyance (EC)**

(Note: Only Evidence containing verifiable AtAs are conveyed)

(I4) **Attestation-Result Conveyance (RC)**

(Note: 0-n RA-Services per SC(E) are possible)

RATS WG Scoping

Asserter
(Note: 1-n supply chain entities per Device are possible)

Verifier

Relying Party

Enforce Trustworthiness Policy

Attestor

Provision DeviceID & Bind AtAs to Device

Storage and Distribution}

(1a) **Attestor**

(TEE, eSE, or similar RoT)

(1b) **Verifier**

(2a) **Attestor**

(2b) **Verifier**

(3) **Relying Party**

Out of Scope

Note: Actor-Role compositions can create ambiguous WG scope scenarios.
Overlap with other Working Groups

• **TEEP WG**
 • Trusted Execution Environments (TEE) in **Devices**
 • **Manifest Profiles**
 • TEE **Attestation Provenance** procedures

• **SUIT WG**
 • **Manifest Format & Information Model** (approach)

• **SACM WG**
 • Identity **Manifest & Information Model** (CoSWID)

• **NETCONF WG**
 • Managed **Trust Anchor** Repository (data at rest)

• **TAMP WG**
 • Protocol for configuring **Trust Anchor** policies (data in motion)
Current RATS Solution I-D, Data Models & Serializations
(and the types of roots-of-trust involved)

Henk Birkholz {henk.birkholz@sit.fraunhofer.de}
Michael Eckel {michael.eckel@sit.fraunhofer.de}

IETF Virtual Interim, June 20th, RATS WG
The Entity Attestation Token
(current state)

• There is consensus on the list that **EAT are CWT**.

• EAT are a subset of CWT **defined by the claims** included in a CWT. Corresponding claims are defined by the EAT document.

• EAT are created by **Attesters/Devices**, typically using flavors of **Roots-of-Trust**.

• EAT are consumed by **Relying Parties/Resource Managers or corresponding Verifiers/Remote Attestation Services**, using **Trust Anchors**.

Arm's Platform Security Architecture (PSA) Attestation Token

- **PSA** are based on **EAT** (and therefore also use the CWT structure).
- PSA require the use of **EAT claims**: nonce and UEID.
- PSA Tokens are Attestation Tokens because they are used in Arm’s **attestations API** of the Arm Platform Security Architecture.
- The PSA **Firmware Framework** makes uses of Root of Trust **security services** for secure applications.
Time-Based Uni-Directional Attestation (TUDA)

• TUDA messages are not using the CWT structure.
• Message composition is very similar to the CBOR Profile for X.509
 • effectively a message “compression” using nested arrays
 • able to convey non-CBOR native structures via CBOR
 • requires canonical decomposition and recomposition to enable signature validation
• TUDA messages do not require a nonce and can provide trustworthy evidence about past operational state of an Attester.
• TUDA requires a remote source of time that is trusted and synchronized in a given scope (trust domain).
• TUDA requires several Roots-of-Trusts, mainly: for Measurement, for Storage and Integrity, and for Reporting.
• https://datatracker.ietf.org/doc/draft-birkholz-rats-tuda/
Remote Attestation YANG Module

• Provides Datastore and RPC statements for a YANG Server running on an Attester.

• The Challenge/Response procedures initiated by the Verifier require the use of a nonce and provide confidentiality via the use of SSH or (D)TLS.

• The protocols NETCONF, RESTCONF, and CORECONF provide serialization capabilities for XML, JSON, and CBOR.

• Roots-of-Trusts Services are provided by a set of TPM-TSS API: SAPI, ESAPI, FAPI. Corresponding RPC statements are specific to these API.

• https://github.com/ietf-rats/draft-birkholz-rats-basic-yang-module

• https://github.com/tpm2-software/tpm2-tss
Reference Remote Attestation Interaction Model

• **Nonce-based challenge/response** remote attestation procedures are used quite frequently.
• Alas, they are often **poorly documented** or deviate in vital details
• In order not to re-specify the same common interaction model (as it is used, for example, by the RATS YANG module), the intention of this I-D is to **avoid these inconsistencies** in the future and enable better interoperability by providing a **single reference**.

• Why is this I-D mentioned in this “solution” slide-deck?
 • The current editor’s version includes a **proof-of-concept example** of how to use the Reference Model. The example is based on **CoAP/CDDL/CBOR**.
Quick Ratholing on Types of Roots-of-Trust

• Typically RATS require Roots-of-Trust.
• Their main characteristic is that you can only choose to trust them – or not – because: Roots-of-Trusts are a set of unconditionally trusted functions that must always behave in an expected manner because their misbehavior cannot be detected.

• Prominent examples of entities defining Roots-of-Trust are NIST, GlobalPlatform, or the Trusted Computing Group.

• A section elaborating on RoT and referencing the current state-of-the-art will be added to the RATS architecture I-D.

• Two examples about references in the next slides....
NIST SP 800-164 (draft)

• Root of Trust for **Storage** (RTS) provides a protected repository and a protected interface to store and manage keying material.

• Root of Trust for **Verification** (RTV) provides a protected engine and interface to verify digital signatures associated with software/firmware and create assertions based on the results.

• Root of Trust for **Integrity** (RTI) provides protected storage, integrity protection, and a protected interface to store and manage assertions.

• Root of Trust for **Reporting** (RTR) provides a protected environment and interface to manage identities and sign assertions.

• Root of Trust for **Measurement** (RTM) provides measurement used by assertions protected via the RTI and attested to with the RTR.
 Serialization of Data Models (current state)

• The following I-D use CBOR (and are using CDDL notation or CBOR diagnostic notation):
 • I-D.mandyam-rats-eat
 • I-D.tschofenig-rats-psa-token
 • I-D.birkholz-rats-tuda
 • I-D.birkholz-rats-reference-interaction-model

• EAT & PSA use CWT/COSE as a basis
 • Complementary CDDL specifications would simplify the potential use of JSON/JOSE

• The RATS YANG Module potentially could use CBOR using the CoRECONF I-D (I-D.ietf-core-comi), but running code is still at early stages and XML or JSON serialization are therefore more likely to be expected.
Calls for Adoption

• The time period of the Call for Adoption wrt to EAT and the corresponding TOKBIND I-D is in the past now:
 • Question to the WG: What is the current status?

• The authors of the RATS Basic YANG Module would like to initiate a Call for Adoption quite soon:
 • Question to the WG: If the latest comments and contributions are addressed and incorporated accordingly (which will be done before submission cut-off), when would be a good time to start a Call for Adoption?
RATS Information Model I-D

Henk Birkholz {henk.birkholz@sit.fraunhofer.de}
Ned Smith {ned.smith@intel.com}

IETF Virtual Interim, June 20th, RATS WG
Purpose of the RATS Information Model (IM)

• Every solution I-D defines assertions, such as, attributes, enumerations, claims or structures with specific semantic meaning.

• All these definitions serve a specific “attestation purpose”, for example, to identify attestation provenance.

• The RATS WG intends “to standardize an information model for assertions/claims which provide information about system components characteristics scoped by the specified use-cases” (charter item 3).

• In contrast, the RATS Architecture needs to build consensus on a core vocabulary, which is not the purpose of the IM.
A proposal on how to start the RATS IM I-D

• Pulling all Information Element definitions from the Reference Interaction Model I-D and adding them to the IM I-D (as they do not belong in the former)

• Copying and referencing the English textual description of the assertions defined by EAT, PSA, and other emerging token flavors

• Deriving missing information elements from the quickly evolving use-case I-D

• Classifying/Annotating Information Elements, e.g., by:
 • root-of-trust primitives required,
 • differentiating verifiable and non-verifiable assertions, or by
 • differentiating application-specific assertions and platform-specific assertions
Not quite about the RATS IM, but close...

• A question to the RATS WG:

How do we plan to proceed with the registration of remote attestation specific claims to be used in CWT, in general?
This is the last slide