Formal Verification of EDHOC
IETF Interim Meeting

Theis Grønbech Petersen, Thorvald Jørgensen, Alessandro Bruni, Carsten Schürmann

5-3-2019
Trust, but Verify

- What security properties?
- Comparison with other protocols, e.g. TLS 1.3?
- Continuous verification
Security Properties

- Identity protection (for client and server)
 - Running the protocol does not reveal the identity of the participants
- Secrecy of session keys and data
 - Session keys and application data are known only by the client and server running the protocol
- Perfect forward secrecy
 - If long-term keys are leaked after running the protocol, the session keys are still not compromised
- Session independence
 - Compromising specific session keys will not affect other sessions
- (Weak) Post compromise security
 - An attacker with access to an oracle that allows encryption and signing using long term keys cannot interfere the protocol once access to the oracle is removed
The Usual Caveats

- Symbolic model: abstract modeling of crypto, automated verification
- Dolev-Yao attacker
 - Attacker has control over the communication channel, can drop, inject, replay and construct their own messages
 - Cryptography as a blackbox: considered perfect and unbreakable
- Key leakage
 - We relax the Dolev-Yao model by revealing all long-term keys (PFS) and session keys (Session Independence)
- No ciphersuite negotiation
EDHOC Asymmetric (draft 08)

Initiator (U)
Knows \(g, U, APP_1, APP_3 \)
Generates \(S_U, N_U, x \)
\[E_U = g^x \]

msg\(_1\) : 1, \(S_U, N_U, E_U, ALG_1, APP_1 \)

Responder (V)
Knows \(g, V, APP_2 \)
Generates \(S_V, N_V, y \)
\[E_V = g^y \]

\[aad_2 = H(\text{msg}_1, \text{data}_2) \]
\[K_2 = H_{KDF}(E_V^y, aad_2) \]

msg\(_2\) : 2, \(S_U, S_V, N_V, E_V, ALG_2, \text{aead}^aad_2(\text{sign}_V(ID_V, aad_2, APP_2)) \)
\[\text{data}_2 \]

\[K_2 = H_{KDF}(E_V^x, aad_2) \]
\[aad_3 = H(H(\text{msg}_1, \text{msg}_2), \text{data}_3) \]
\[K_3 = H_{KDF}(E_V^x, aad_3) \]

msg\(_3\) : 3, \(S_V, \text{aead}^aad_3(\text{sign}_U(ID_U, aad_3, APP_3)) \)
\[\text{data}_3 \]

\[K_3 = H_{KDF}(E_U^y, aad_3) \]
Initiator \((U)\)
Knows \(g, PSK, APP_1, APP_3\)

Generates \(S_U, N_U, x\)
\[E_U = g^x \]

Responder \((V)\)
Knows \(g, PSK, APP_2\)

Generates \(S_V, N_V, y\)
\[E_V = g^y \]

\(aad_2 = H(msg_1, data_2)\)
\[K_2 = H_{KDF}(E_U^y, aad_2, PSK) \]

\(msg_1: 4, S_U, N_U, E_U, ALG_1, KID, APP_1\)

\(msg_2: 5, S_U, S_V, N_V, E_V, ALG_2, \text{enc}_{K_2}^{aad_2}(APP_2)\)

\(aad_3 = H(H(msg_1, msg_2), data_3)\)
\[K_3 = H_{KDF}(E_V^x, aad_3, PSK) \]

\(msg_3: 6, S_V, \text{aead}_{K_3}^{aad_3}(APP_3)\)

\(K_3 = H_{KDF}(E_U^y, aad_3, PSK)\)
Discoveries (TL;DR)

- It's a SIGMA-I protocol
- Weak guarantees for APP in Asymmetric Mode
- Authentication, secrecy (of keys, application data)
- Perfect forward secrecy (weaker guarantees for active attacks)
Discoveries (TL;DR)

- It’s a SIGMA-I protocol
Discoveries (TL;DR)

- It’s a SIGMA-I protocol
- Weak guarantees for APP_2 in Asymmetric Mode
Discoveries (TL;DR)

- It’s a SIGMA-I protocol
- Weak guarantees for APP_2 in Asymmetric Mode
- Authentication, secrecy (of keys, application data)
- Perfect forward secrecy (weaker guarantees for active attacks)
EDHOC Evolution (draft-08 → draft-11)

- Discussion on APP₂: removal, reintroduction, renaming
- Removal of nonces
Stronger attacker model:
- malicious principals with registered keys
- session independence (revealing session keys should maintain all the checked properties for other sessions)
Stronger attacker model:
- malicious principals with registered keys
- session independence (revealing session keys should maintain all the checked properties for other sessions)

Results:
Stronger attacker model:
- malicious principals with registered keys
- session independence (revealing session keys should maintain all the checked properties for other sessions)

Results:
- nothing surprising (fortunately)
- w/ session independence authentication proofs running for 10+ days
Verification results (Identity protection)

RESULT attacker(idI(pk(skU[!1 = v_4063])))
 ==> event(LTK_Reveal(skU[!1 = v_4061]))
 || event(SessK3A_Reveal(x_180,skU[!1 = v_4062])) is true.
RESULT attacker(idR(pk(skU[!1 = v_28705])))
 ==> event(LTK_Reveal(skU[!1 = v_28703]))
 || event(SessK2A_Reveal(x_184,skU[!1 = v_28704])) cannot be proved.
RESULT attacker_p1(idI(pk(skU[!1 = v_54380])))
 ==> event(LTK_Reveal(skU[!1 = v_54378]))
 || event(SessK3A_Reveal(x_188,skU[!1 = v_54379])) is true.
RESULT attacker_p1(idR(pk(skU[!1 = v_78966])))
 ==> event(LTK_Reveal(skU[!1 = v_78964]))
 || event(SessK2A_Reveal(x_192,skU[!1 = v_78965])) cannot be proved.
Verification results (Secrecy)

RESULT attacker(APP_2A(pk(skU_205),skV_206,S_V_207,K_2_208))
 => event(LTK_Reveal(skU_205))
 || event(SessK2A_Reveal(K_2_208,skU[!1 = v_178396])) cannot be proved.
RESULT attacker(APP_2A'(pk(skU_210),skV_211,S_V_212,K_2_213))
 => event(LTK_Reveal(skU_210))
 || event(SessK2A_Reveal(K_2_213,skU[!1 = v_204184])) is true.
RESULT attacker(APP_3A(skU_215,pk(skV_216),S_U_217,K_3_218))
 => event(LTK_Reveal(skV_216))
 || event(SessK3A_Reveal(K_3_218,skU[!1 = v_228771])) is true.
RESULT attacker(APP_2S(PSK_196,S_U_197,K_2_198))
 => event(PSK_Reveal(PSK_196))
 || event(SessK2S_Reveal(K_2_198)) is true.
RESULT attacker(APP_2S'(PSK_199,S_U_200,K_2_201))
 => event(PSK_Reveal(PSK_199))
 || event(SessK2S_Reveal(K_2_201)) is true.
RESULT attacker(APP_3S(PSK_202,S_V_203,K_3_204))
 => event(PSK_Reveal(PSK_202))
 || event(SessK3S_Reveal(K_3_204)) is true.
Verification results (Perfect Forward Secrecy)

RESULT attacker_p1(APP_2A(pk(skU_220), skV_221, S_V_222, K_2_223))
 ==> event(LTK_Reveal(skU_220))
 || event(SessK2A_Reveal(K_2_223, skU[!1 = v_253358])) cannot be proved.
RESULT attacker_p1(APP_2A'(pk(skU_225), skV_226, S_V_227, K_2_228))
 ==> event(LTK_Reveal(skU_225))
 || event(SessK2A_Reveal(K_2_228, skU[!1 = v_279151])) is true.
RESULT attacker_p1(APP_3A(skU_230, pk(skV_231), S_U_232, K_3_233))
 ==> event(LTK_Reveal(skV_231))
 || event(SessK3A_Reveal(K_3_233, skU[!1 = v_303742])) is true.
RESULT attacker_p1(APP_2S(PSK_235, S_U_236, K_2_237))
 ==> event(PSK_Reveal(PSK_235))
 || event(SessK2S_Reveal(K_2_237)) cannot be proved.
RESULT attacker_p1(APP_2S'(PSK_238, S_U_239, K_2_240))
 ==> event(PSK_Reveal(PSK_238))
 || event(SessK2S_Reveal(K_2_240)) is true.
RESULT attacker_p1(APP_3S(PSK_241, S_V_242, K_3_243))
 ==> event(PSK_Reveal(PSK_241))
 || event(SessK3S_Reveal(K_3_243)) is true.
Verification results (Authentication)

RESULT inj-event(midInitiatorA(U_253,V_254,E_V_255))
 ==> inj-event(startResponderA(U’,V_254,E_V_255,skV_256))
 || event(LTK_Reveal(skV_256)) is true.
RESULT inj-event(endResponderA(U_257,V_258,E_U_259))
 ==> inj-event(startInitiatorA(U_257,V_258,E_U_259,skU_260))
 || event(LTK_Reveal(skU_260)) is true.
RESULT inj-event(endInitiatorA(U_261,V_263,E_V_264))
 ==> inj-event(startResponderA(U’_262,V_263,E_V_264,skV_265))
 || event(LTK_Reveal(skV_265)) is true.
Result table (draft 08)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Data</th>
<th>Secrecy</th>
<th>(at completion)</th>
<th>PFS</th>
<th>(at completion)</th>
<th>Integrity</th>
<th>(at completion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric</td>
<td>APP_1</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td></td>
<td>APP_2</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td></td>
<td>APP_3</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Symmetric</td>
<td>APP_1</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
<tr>
<td></td>
<td>APP_2</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td></td>
<td>APP_3</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
Comparison with state of the art verification

Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate

Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi
INRIA
{karthik.bhargavan,bruno.blanchet,nadim.kobeissi}@inria.fr

Secrecy: If an application data message m is sent over a session cid between an honest client C and honest server S, then this message is kept confidential from an attacker who cannot break the cryptographic constructions used in the session cid.

Forward Secrecy: Secrecy (above) holds even if the long-term keys of the client and server (sk_C, pk_C, psk_C) are given to the adversary after the session cid has been completed and the session keys k_c, k_s are deleted by C and S.

Authentication: If an application data message m is received over a session cid from an honest and authenticated peer, then the peer must have sent the same application data m in a matching session (with the same parameters $cid, offer_C, mode_S, pk_C, pk_S, psk_C, k_c, k_s, psk_S$).

Replay Prevention: Any application data m sent over a session cid may be accepted at most once by the peer.

Unique Channel Identifier: If a client session and a server session have the same identifier cid, then all other parameters in these sessions must match (same $cid, offer_C, mode_S, pk_C, pk_S, psk_C, k_c, k_s, psk_S$).
Status

- Some proofs are WIP for draft-11
- No surprises
Some proofs are WIP for draft-11
No surprises
Questions?