
Formal Verification of EDHOC
IETF Interim Meeting

Theis Grønbech Petersen, Thorvald Jørgensen, Alessandro Bruni, Carsten
Schürmann

5-3-2019

Trust, but Verify

I What security properties?
I Comparison with other protocols, e.g. TLS 1.3?
I Continuous verification

Security Properties

I Identity protection (for client and server)
I Running the protocol does not reveal the identity of the participants

I Secrecy of session keys and data
I Session keys and application data are known only by the client and server running

the protocol
I Perfect forward secrecy

I If long-term keys are leaked after running the protocol, the session keys are still not
compromised

I Session independence
I Compromising specific session keys will not affect other sessions

I (Weak) Post compromise security
I An attacker with access to an oracle that allows encryption and signing using long

term keys cannot interfere the protocol once access to the oracle is removed

The Usual Caveats

I Symbolic model: abstract modeling of crypto, automated verification
I Dolev-Yao attacker

I Attacker has control over the communication channel, can drop, inject, replay and
construct their own messages

I Cryptography as a blackbox: considered perfect and unbreakable
I Key leakage

I We relax the Dolev-Yao model by revealing all long-term keys (PFS) and session
keys (Session Independence)

I No ciphersuite negotiation

EDHOC Asymmetric (draft 08)

Initiator (U)
Knows g ,U,APP1,APP3

Responder (V)
Knows g ,V ,APP2

Generates SU , NU , x
EU = g x

msg1 : 1,SU , NU , EU , ALG 1, APP1

Generates SV , NV , y
EV = g y

aad2 = H(msg1, data2)
K2 = HKDF (EU

y , aad2)

msg2 :

data2︷ ︸︸ ︷
2, SU ,SV ,NV ,EV ,ALG 2, aeadaad2

K2
(signV (IDV , aad2,APP2))

K2 = HKDF (EV
x , aad2)

aad3 = H(H(msg1,msg2), data3)
K3 = HKDF (EV

x , aad3)

msg3 :

data3︷ ︸︸ ︷
3,SV , aead

aad3
K3

(signU(IDU , aad3,APP3))

K3 = HKDF (EU
y , aad3)

EDHOC Symmetric (draft 08)

Initiator (U)
Knows g ,PSK ,APP1,APP3

Responder (V)
Knows g ,PSK ,APP2

Generates SU , NU , x
EU = g x

msg1 : 4, SU , NU , EU , ALG 1, KID, APP1

Generates SV , NV , y
EV = g y

aad2 = H(msg1, data2)
K2 = HKDF (EU

y , aad2, PSK)

msg2 :

data2︷ ︸︸ ︷
5, SU , SV , NV , EV , ALG 2, encaad2

K2
(APP2)

K2 = HKDF (EV
x , aad2, PSK)

aad3 = H(H(msg1,msg2), data3)
K3 = HKDF (EV

x , aad3, PSK)

msg3 :

data3︷ ︸︸ ︷
6, SV , aead

aad3
K3

(APP3)

K3 = HKDF (EU
y , aad3, PSK)

Discoveries (TL;DR)

I It’s a SIGMA-I protocol

I Weak guarantees for APP2 in Asymmetric Mode

I Authentication, secrecy (of keys, application data)
I Perfect forward secrecy (weaker guarantees for active attacks)

Discoveries (TL;DR)

I It’s a SIGMA-I protocol

I Weak guarantees for APP2 in Asymmetric Mode

I Authentication, secrecy (of keys, application data)
I Perfect forward secrecy (weaker guarantees for active attacks)

Discoveries (TL;DR)

I It’s a SIGMA-I protocol

I Weak guarantees for APP2 in Asymmetric Mode

I Authentication, secrecy (of keys, application data)
I Perfect forward secrecy (weaker guarantees for active attacks)

Discoveries (TL;DR)

I It’s a SIGMA-I protocol

I Weak guarantees for APP2 in Asymmetric Mode

I Authentication, secrecy (of keys, application data)
I Perfect forward secrecy (weaker guarantees for active attacks)

EDHOC Evolution (draft-08 → draft-11)

I Discussion on APP2: removal, reintroduction, renaming
I Removal of nonces

Draft-11 verification (WIP)

I Stronger attacker model:
I malicious principals with registered keys
I session independence (revealing session keys should maintain all the checked

properties for other sessions)

I Results:
I nothing surprising (fortunately)
I w/ session independence authentication proofs running for 10+ days

Draft-11 verification (WIP)

I Stronger attacker model:
I malicious principals with registered keys
I session independence (revealing session keys should maintain all the checked

properties for other sessions)
I Results:

I nothing surprising (fortunately)
I w/ session independence authentication proofs running for 10+ days

Draft-11 verification (WIP)

I Stronger attacker model:
I malicious principals with registered keys
I session independence (revealing session keys should maintain all the checked

properties for other sessions)
I Results:

I nothing surprising (fortunately)
I w/ session independence authentication proofs running for 10+ days

Verification results (Identity protection)

RESULT attacker(idI(pk(skU[!1 = v_4063])))
==> event(LTK_Reveal(skU[!1 = v_4061]))

|| event(SessK3A_Reveal(x_180,skU[!1 = v_4062])) is true.
RESULT attacker(idR(pk(skU[!1 = v_28705])))

==> event(LTK_Reveal(skU[!1 = v_28703]))
|| event(SessK2A_Reveal(x_184,skU[!1 = v_28704])) cannot be proved.

RESULT attacker_p1(idI(pk(skU[!1 = v_54380])))
==> event(LTK_Reveal(skU[!1 = v_54378]))

|| event(SessK3A_Reveal(x_188,skU[!1 = v_54379])) is true.
RESULT attacker_p1(idR(pk(skU[!1 = v_78966])))

==> event(LTK_Reveal(skU[!1 = v_78964]))
|| event(SessK2A_Reveal(x_192,skU[!1 = v_78965])) cannot be proved.

Verification results (Secrecy)

RESULT attacker(APP_2A(pk(skU_205),skV_206,S_V_207,K_2_208))
==> event(LTK_Reveal(skU_205))

|| event(SessK2A_Reveal(K_2_208,skU[!1 = v_178396])) cannot be proved.
RESULT attacker(APP_2A’(pk(skU_210),skV_211,S_V_212,K_2_213))

==> event(LTK_Reveal(skU_210))
|| event(SessK2A_Reveal(K_2_213,skU[!1 = v_204184])) is true.

RESULT attacker(APP_3A(skU_215,pk(skV_216),S_U_217,K_3_218))
==> event(LTK_Reveal(skV_216))

|| event(SessK3A_Reveal(K_3_218,skU[!1 = v_228771])) is true.
RESULT attacker(APP_2S(PSK_196,S_U_197,K_2_198))

==> event(PSK_Reveal(PSK_196))
|| event(SessK2S_Reveal(K_2_198)) is true.

RESULT attacker(APP_2S’(PSK_199,S_U_200,K_2_201))
==> event(PSK_Reveal(PSK_199))

|| event(SessK2S_Reveal(K_2_201)) is true.
RESULT attacker(APP_3S(PSK_202,S_V_203,K_3_204))

==> event(PSK_Reveal(PSK_202))
|| event(SessK3S_Reveal(K_3_204)) is true.

Verification results (Perfect Forward Secrecy)

RESULT attacker_p1(APP_2A(pk(skU_220),skV_221,S_V_222,K_2_223))
==> event(LTK_Reveal(skU_220))

|| event(SessK2A_Reveal(K_2_223,skU[!1 = v_253358])) cannot be proved.
RESULT attacker_p1(APP_2A’(pk(skU_225),skV_226,S_V_227,K_2_228))

==> event(LTK_Reveal(skU_225))
|| event(SessK2A_Reveal(K_2_228,skU[!1 = v_279151])) is true.

RESULT attacker_p1(APP_3A(skU_230,pk(skV_231),S_U_232,K_3_233))
==> event(LTK_Reveal(skV_231))

|| event(SessK3A_Reveal(K_3_233,skU[!1 = v_303742])) is true.
RESULT attacker_p1(APP_2S(PSK_235,S_U_236,K_2_237))

==> event(PSK_Reveal(PSK_235))
|| event(SessK2S_Reveal(K_2_237)) cannot be proved.

RESULT attacker_p1(APP_2S’(PSK_238,S_U_239,K_2_240))
==> event(PSK_Reveal(PSK_238))

|| event(SessK2S_Reveal(K_2_240)) is true.
RESULT attacker_p1(APP_3S(PSK_241,S_V_242,K_3_243))

==> event(PSK_Reveal(PSK_241))
|| event(SessK3S_Reveal(K_3_243)) is true.

Verification results (Authentication)

RESULT inj-event(midInitiatorA(U_253,V_254,E_V_255))
==> inj-event(startResponderA(U’,V_254,E_V_255,skV_256))

|| event(LTK_Reveal(skV_256)) is true.
RESULT inj-event(endResponderA(U_257,V_258,E_U_259))

==> inj-event(startInitiatorA(U_257,V_258,E_U_259,skU_260))
|| event(LTK_Reveal(skU_260)) is true.

RESULT inj-event(endInitiatorA(U_261,V_263,E_V_264))
==> inj-event(startResponderA(U’_262,V_263,E_V_264,skV_265))

|| event(LTK_Reveal(skV_265)) is true.

Result table (draft 08)

Variant Data Secrecy (at completion) PFS (at completion) Integrity (at completion)
Asymmetric APP1 − − − − 7 3

APP2 7 3 7 3 3 3

APP3 3 3 3 3 3 3

Symmetric APP1 − − − − 7 3

APP2 3 3 7 3 3 3

APP3 3 3 3 3 3 3

Comparison with state of the art verification

Verified Models and Reference Implementations
for the TLS 1.3 Standard Candidate

Karthikeyan Bhargavan, Bruno Blanchet, Nadim Kobeissi
INRIA

{karthik.bhargavan,bruno.blanchet,nadim.kobeissi}@inria.fr

Abstract—TLS 1.3 is the next version of the Transport Layer
Security (TLS) protocol. Its clean-slate design is a reaction both
to the increasing demand for low-latency HTTPS connections
and to a series of recent high-profile attacks on TLS. The
hope is that a fresh protocol with modern cryptography will
prevent legacy problems; the danger is that it will expose
new kinds of attacks, or reintroduce old flaws that were fixed
in previous versions of TLS. After 18 drafts, the protocol is
nearing completion, and the working group has appealed to
researchers to analyze the protocol before publication. This
paper responds by presenting a comprehensive analysis of the
TLS 1.3 Draft-18 protocol.

We seek to answer three questions that have not been fully
addressed in previous work on TLS 1.3: (1) Does TLS 1.3
prevent well-known attacks on TLS 1.2, such as Logjam or the
Triple Handshake, even if it is run in parallel with TLS 1.2?
(2) Can we mechanically verify the computational security of
TLS 1.3 under standard (strong) assumptions on its crypto-
graphic primitives? (3) How can we extend the guarantees of
the TLS 1.3 protocol to the details of its implementations?

To answer these questions, we propose a methodology
for developing verified symbolic and computational models
of TLS 1.3 hand-in-hand with a high-assurance reference
implementation of the protocol. We present symbolic ProVerif
models for various intermediate versions of TLS 1.3 and
evaluate them against a rich class of attacks to reconstruct
both known and previously unpublished vulnerabilities that
influenced the current design of the protocol. We present
a computational CryptoVerif model for TLS 1.3 Draft-18
and prove its security. We present RefTLS, an interoperable
implementation of TLS 1.0-1.3 and automatically analyze its
protocol core by extracting a ProVerif model from its typed
JavaScript code.

I. INTRODUCTION

The Transport Layer Security (TLS) protocol is widely
used to establish secure channels on the Internet. It was
first proposed under the name SSL [45] in 1994, and has
undergone a series of revisions since, leading up to the stan-
dardization of TLS 1.2 [37] in 2008. Each version adds new
features, deprecates obsolete constructions, and introduces
countermeasures for weaknesses found in previous versions.
The behavior of the protocol can be further customized via
extensions, some of which are mandatory to prevent known
attacks on the protocol.

One may expect that TLS clients and servers would use
only the latest version of the protocol with all security-
critical extensions enabled. In practice, however, many
legacy variants of the protocol continue to be supported
for backwards compatibility, and the everyday use of TLS

depends crucially on clients and servers negotiating the most
secure variant that they have in common. Securely com-
posing and implementing the many different versions and
features of TLS has proved to be surprisingly hard, leading
to the continued discovery of high-profile vulnerabilities in
the protocol.

A history of vulnerabilities. We identify four kinds of
attacks that TLS has traditionally suffered from. Downgrade
attacks enable a network adversary to fool a TLS client and
server into using a weaker variant of the protocol than they
would normally use with each other. In particular, version
downgrade attacks were first demonstrated from SSL 3 to
SSL 2 [72] and continue to be exploited in recent attacks
like POODLE [60] and DROWN [7]. Cryptographic vul-
nerabilities rely on weaknesses in the protocol constructions
used by TLS. Recent attacks have exploited key biases in
RC4 [3], [71], padding oracles in MAC-then-Encrypt [4],
[60], padding oracles in RSA PKCS#1 v1.5 [7], weak
Diffie-Hellman groups [1], and weak hash functions [23].
Protocol composition flaws appear when multiple modes
of the protocol interact in unexpected ways if enabled in
parallel. For example, the renegotiation attack [65] exploits
the sequential composition of two TLS handshakes, the
Triple Handshake attack [15] composes three handshakes,
and cross-protocol attacks [58], [72] use one kind of TLS
handshake to attack another. Implementation bugs contribute
to the fourth category of attacks on TLS, and are perhaps the
hardest to avoid. They range from memory safety bugs like
HeartBleed and coding errors like GotoFail to complex state
machine flaws like SKIP and FREAK [12]. Such bugs can
be exploited to bypass all the security guarantees of TLS,
and their prevalence, even in widely-vetted code, indicates
the challenges of implementing TLS securely.

Security proofs. Historically, when an attack is found on
TLS, practitioners propose a temporary fix that is imple-
mented in all mainstream TLS libraries, then a longer-term
countermeasure is incorporated into a protocol extension
or in the next version of the protocol. This has led to
a attack-patch-attack cycle that does not provide much
assurance in any single version of the protocol, let alone
its implementations.

An attractive alternative would have been to develop
security proofs that systematically demonstrated the absence
of large classes of attacks in TLS. However, developing
proofs for an existing standard that was not designed with
security models in mind is exceedingly hard [63]. After
years of effort, the cryptographic community only recently

2017 IEEE Symposium on Security and Privacy

© 2017, Karthikeyan Bhargavan. Under license to IEEE.

DOI 10.1109/SP.2017.26

483

II. A SECURITY MODEL FOR TLS

Client C Server S

Knows (skC , pkC), psk Knows (skS , pkS), psk
Negotiation (offerC ,modeS)

Authenticated Key Exchange (cid , kc, ks, psk
′)

New client session:
C = C ! cid "→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk

′)

New server session:
S = S ! cid "→ (offerC ,modeS ,

pkC , pkS , psk ,
kc, ks, psk

′)

Authenticated Encryption (enckc(m0), encks(m1), . . .)

Application Data Stream:
C

cid←→ S : m0, m1, . . .

Application Data Stream:
C

cid←→ S : m0, m1, . . .

Figure 1: TLS Protocol Structure: Negotiation, then Authen-
ticated Key Exchange (AKE), then Authenticated Encryption
(AE) for application data streams.

Figure 1 depicts the progression of a typical TLS con-
nection. Since a client and server may support different
sets of features, they first negotiate a protocol mode that
they have in common. In TLS, the client C makes an
offerC and the server chooses its preferred modeS , which
includes the protocol version, the key exchange protocol, the
authenticated encryption scheme, the Diffie-Hellman group
(if applicable), and the signature and hash algorithms.

Then, C and S execute the negotiated authenticated
key exchange protocol (e.g. Ephemeral Elliptic-Curve Diffie
Hellman), which may use some combination of the long-
term keys (e.g. public/private key pairs, symmetric pre-
shared keys) known to the client and server. The key
exchange ends by computing fresh symmetric keys (kc, ks)
for a new session (with identifier cid) between C and S, and
potentially a new pre-shared key (psk ′) that can be used to
authenticate future connections between them.

In TLS, the negotiation and key exchange phases are
together called the handshake protocol. Once the handshake
is complete, C and S can start exchanging application data,
protected by an authenticated encryption scheme (e.g. AES-
GCM) with the session keys (kc, ks). The TLS protocol layer
that handles authenticated encryption for application data is
called the record protocol.

Security Goals for TLS. Each phase of a TLS connection
has its own correctness and security goals. For example,
during negotiation, the server must choose a modeS that is
consistent with the client’s offerC ; the key exchange must
produce a secret session key, and so on. Although these
intermediate security goals are important building blocks
towards the security of the full TLS protocol, they are less
meaningful to applications that typically use TLS via a TCP-
socket-like API and are unaware of the protocol’s internal
structure. Consequently, we state the security goals of TLS
from the viewpoint of the application, in terms of messages
it sends and receives over a protocol session.

All goals are for messages between honest and authenti-
cated clients and servers, that is, for those whose long-term

keys (skC , skS , psk) are unknown to the attacker. If only the
server is authenticated, then the goals are stated solely from
the viewpoint of the client, since the server does not know
whether it is talking to an honest client or the attacker.
Secrecy: If an application data message m is sent over a

session cid between an honest client C and honest
server S, then this message is kept confidential from
an attacker who cannot break the cryptographic con-
structions used in the session cid .

Forward Secrecy: Secrecy (above) holds even if the long-
term keys of the client and server (skC , pkC , psk) are
given to the adversary after the session cid has been
completed and the session keys kc, ks are deleted by C
and S.

Authentication: If an application data message m
is received over a session cid from an honest
and authenticated peer, then the peer must
have sent the same application data m in a
matching session (with the same parameters
cid , offerC ,modeS , pkC , pkS , psk , kc, ks, psk

′).
Replay Prevention: Any application data m sent over a

session cid may be accepted at most once by the peer.
Unique Channel Identifier: If a client session and a

server session have the same identifier cid , then all
other parameters in these sessions must match (same
cid , offerC ,modeS , pkC , pkS , psk , kc, ks, psk

′).
These security goals encompass most of the standard

security goals for secure channel protocols such as TLS. For
example, secrecy for application data implicitly requires that
the authenticated key exchange must generate secret keys.
Authentication incorporates the requirement that the client
and server must have matching sessions, and in particular,
that they agree on each others’ identities as well as the
inputs and outputs of negotiation. Hence, it prohibits client
and server impersonation, and man-in-the-middle downgrade
attacks.

The requirement for a unique channel identifier is a bit
more unusual, but it allows multiple TLS sessions to be
securely composed, for example via session resumption or
renegotiation, without exposing them to credential forward-
ing attacks like Triple Handshake [15]. The channel identi-
fier could itself be a session key or a value generated from
it, but is more usually a public value that is derived from
session data contributed by both the client and server [17].

Symbolic vs. Computational Models. Before we can model
and verify TLS 1.3 against the security goals given above,
we need to specify our protocol execution model. There
are two different styles in which protocols have classically
been modeled, and in this paper, we employ both of them.
Symbolic models were developed by the security proto-
col verification community for ease of automated analysis.
Cryptographers, on the other hand, prefer to use computa-
tional models and do their proofs by hand. A full comparison
between these styles is beyond the scope of this paper (see
e.g. [26]); here we briefly outline their differences in terms
of the two tools we will use.

ProVerif [25], [27] analyzes symbolic protocol models,
whereas CryptoVerif [24] verifies computational models.

485

Status

I Some proofs are WIP for draft-11
I No surprises

I Questions?

Status

I Some proofs are WIP for draft-11
I No surprises
I Questions?

