
IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 1

Key Provisioning for Group
Communication using ACE

draft-ietf-ace-key-groupcomm-05

Francesca Palombini, Ericsson
Marco Tiloca, RISE

IETF 107, ACE WG, Virtual, Apr 15, 2020

https://tools.ietf.org/html/draft-ietf-ace-key-groupcomm-05

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 2

Quick Recap

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 3

• High level status update (and where to find in-detail updates)
• TODOs left from February’s interim
• Updates that need ok from wg (already implemented)

• “Scope question”
• “Jim’s proposal on legal requestor”

• Open github issues (including open points from latest review)

• Open points from mailing list posts
• “Keeping the same key identifier for groups”
• “Considerations on congestion control”

• Couple of open points to check from previous review (outdated?)

What’s left?

Today
N

O
T Today

V-06

V-07

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 4

• Token to cover more than one group/topic at once – Issue #42

• Continue including Peter’s review (editorials and clarifications)
https://mailarchive.ietf.org/arch/msg/ace/_PDsf5rnGtVw6y3nSQTJun0t7P4

• Continue including Jim’s review – Issues #46 #51 #53
https://mailarchive.ietf.org/arch/msg/ace/mR-qwWEhmmOFIVL2ToH5pc2GXqs

TODO left from February Interim

DONE

DONE
Not fi

nish
ed

https://mailarchive.ietf.org/arch/msg/ace/_PDsf5rnGtVw6y3nSQTJun0t7P4
https://mailarchive.ietf.org/arch/msg/ace/mR-qwWEhmmOFIVL2ToH5pc2GXqs

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 5

• Version -04 was submitted January 15th – Closed most points from IETF 106
• Review from Jim: https://mailarchive.ietf.org/arch/msg/ace/mR-qwWEhmmOFIVL2ToH5pc2GXqs/
• Presented at January ACE interim
• Discussion at the February ACE interim

• Version -05 was submitted March 9th

• Based on the review from Jim.
• Review from Jim: https://mailarchive.ietf.org/arch/msg/ace/gsF02hHymShiYkr1pxvqWTNUcP4/
à github issues

• Work in progress in PR v-06 on github:
• https://ace-wg.github.io/ace-key-groupcomm/v-06/draft-ietf-ace-key-groupcomm.html
• Most issues closed
• Some open points left (later slides)

What happened since IETF 106 – status update

https://mailarchive.ietf.org/arch/msg/ace/mR-qwWEhmmOFIVL2ToH5pc2GXqs/
https://datatracker.ietf.org/meeting/interim-2020-ace-02/materials/slides-interim-2020-ace-02-sessa-draft-ietf-ace-key-groupcomm
https://datatracker.ietf.org/meeting/interim-2020-ace-04/materials/slides-interim-2020-ace-04-sessa-interim2502-ace-key-groupcomm
https://mailarchive.ietf.org/arch/msg/ace/gsF02hHymShiYkr1pxvqWTNUcP4/
https://ace-wg.github.io/ace-key-groupcomm/v-06/draft-ietf-ace-key-groupcomm.html

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 6

• New labels:
• “editor done + wg review request”
• “ongoing”
• “question”
• “PR v-06”

• 33 open / 51 closed
• 27 editor done – please review, explicit “agree, ok to close” help keeping track.
• 3 open
• 3 question

New issues in github
https://github.com/ace-wg/ace-key-groupcomm/issues?page=1&q=is%3Aissue+is%3Aopen

https://github.com/ace-wg/ace-key-groupcomm/issues%3Fpage=1&q=is%253Aissue+is%253Aopen

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 7

• Goal: 1 access token covers multiple groups at once. 1 token post for several groups.
• Access token response:

sign_info_res = [+ sign_info_entry]
sign_info_entry = [id : gid / [+ gid],

sign_alg : int / tstr,
sign_parameters : any / nil,
sign_key_parameters : any / nil,
? pub_key_enc_res = int / nil]

• New format for scope.
scp = [gid , ? (role / [2*role])]
scope = << [+ scp] >>

• A node can join several groups if they use the same pub key encoding and signing algorithm.
• 1 Token Post followed by several Joining exchanges
• /!\ The same kdcnonce is used to join each different group. /!\

• kdcnonce is used as one of the input to the signature for the client to prove possession of its private key
(also over client nonce)

• ace-key-groupcomm-OSCORE does it differently, based on the existing sec association Client-KDC

Scope question from Jim
(Or how we are dealing with multi-scope tokens)

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 8

C AS KDC Group
| | | Member

/ | | | |
| | Authorization Request | | |

Defined | |-------------------------->| | |
in the | | | | |
ACE | | Authorization Response | | |

framework | |<--------------------------| | |
| | | |
\ |---------- Token Post --------->| |
<------ Token Response ---------	
------- Joining Request ------->	
<------ Joining Response -------	
------- Joining Request ------->	
<------ Joining Response -------	

Scope question
(Or how we are dealing with multi-scope tokens)

gid1, gid2

gid1,
signature1

kdcnonce

gid2,
signature2

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 9

• Goal: role to be propagated along with the signature public key for each
node from the KDC to the server during the joining process.
• Issue #65
• Addition of “peer_roles” parameter to reflect that:

pub_keys = <<[key1, key2, key3]>>

peer_roles = [requester, requester, [requester, responder]]

Jim’s proposal on legal requestor

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 10

My main question is: what does this consideration applies to? It could apply to the joining process and to POST to pub-key (where the node post a new
public key to the KDC). These are quite perpendicular though (1 -> joining, 2 -> pub-key, 3 -> not supported), so I am not sure what this adds… This could
be covering the join – leave – rejoin with the same token process, that is not very well covered right now, is that something we need to expand on?

1. No public key with the right parameters has been associated with the token - in this case both the key and proof are required
What we do say is that key and proof of possession are required during join process if KDC collects and distribute keys, and the client is a sender.
So one key will always be associated with the token. 1 is a quite convoluted way to say: “always at joining” (which we already say…) or is this
supposed to cover another case?

2. One public key with the right parameters has been associated with the token - in this case the following would seem to be fine
Are we talking about after joining, posting a new pub key to the KDC? Then both are needed. Unless the key is the same…in which case it is
useless to repost the same to pub-key.
• a) neither are present,
• b) just the key is present (proof already has been done),
• c) both are present

3. Multiple public keys with the right parameters have been associated with the token - In this case the following would seem to be fine
The KDC only keeps one public key per node (see pub-key handler), this is not supported. In what case would the client want to associate more
than one key? Is this something we want?
• a) just the key is present (proof has already been done) or
• b) both are present

Such a change would seem to maximize the number of times that the public key can be omitted and an even greater number of times the proof can be
omitted. In the event that the proof is needed, the error would return a new server nonce to be used in the re-sent join message.
I think right now we already cover the case where the key and proof MUST be sent in each section. What are we missing?

Issue #60 - When are the public key and proof
of possession required to be present

question

https://github.com/ace-wg/ace-key-groupcomm/issues/60

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 11

In section 4.1.7.1 (POST to pub-key)
If a public key is replaced, does this constitute a
reason that a key roll over is going to be required? Is this something that
needs to be distributed proactively if it is allowed by the server since
otherwise things may be really messed up?

The answer is not necessarily, but nothing stops the KDC to do a key
rollover if it wants.
I think this should be already clear, do we need any specific clarifications?

Issue #83 - Section 4.1.7.1 - Group rekeying if a
public key is replaced

question

https://github.com/ace-wg/ace-key-groupcomm/issues/83

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 12

When a Client receives a message from a sender for the first time, it needs to have a mechanism
in place to avoid replay, e.g. Appendix B.2 of [RFC8613].
This need to be explained a bit more. I know
what this is talking about but my first thought was how can it be a replay
if this is the first time I have seen it? This should probably also note
the possible mitigation that it is limited by the time since the last time
the key was rolled over.

So, the additional detail should cover:
• A mechanism like Appendix B.2 of OSCORE are useful in case of lost of context and reboot, so

that the recipient can be on the safe side.
• If the group is rekeying, the time window between the end of the rekeying and a next loss of

context is safe to go. A group rekeying puts the recipients on the safe side.
Is that it?

Issue #88 - Section 7 - Expand the first
paragraph.

question

https://ace-wg.github.io/ace-key-groupcomm/v-06/draft-ietf-ace-key-groupcomm.html
https://github.com/ace-wg/ace-key-groupcomm/issues/88

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 13

I would like to have the ability to do a fetch based
on the roles of the client associated with the public key. That is I would
like to retrieve only those public keys associated with a requestor.

Right now: FETCH to /ace-group/GROUPNAME/pub_key with payload:
[node1, node2, node3]

Proposal: FETCH to /ace-group/GROUPNAME/pub_key with payload:

[[role1, role2], [node1, node2, node3]] à this means I want all keys for the nodes having roles “role2” OR “role2”,
and for the nodes “node1”, “node2”, ”node3”

NOTES

• this is OK: [[], [node1, node2, node3]]

• this is also OK (combination of roles): [[[role1, role2]], []] and means I want all keys for the nodes having roles
“role2” AND “role2”

Issue #77 - Section 4.1.3.1 - FETCH of public
keys based on node roles

https://github.com/ace-wg/ace-key-groupcomm/issues/77

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 14

In section 4.3 - I don't know if this is worth while thinking about or
not. There may want to be two different expiration values that are defined
in the system. When you stop sending using the key material and when you
stop receiving using the keying material. These values would need to be
contingent on a "key revocation" event as well. The delta could be setup as
a new group parameter with a default value set by the document.

• “Contingent on a key revocation event”?
• Easy to add.

Issue #84 - Section 4.3 - Two expiration times
for the key material

https://github.com/ace-wg/ace-key-groupcomm/issues/84

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 15

In term of the name, what about doing the encoding in JSON?

Are you talking about registering ace-groupcomm+json? We do not define
that, and all the ace-groupcomm parameters are defined only for CBOR.
Easy to do.
Is this something we want to add?

Issue #90 - Section 8 - Admit encoding in JSON

https://github.com/ace-wg/ace-key-groupcomm/issues/90

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 16

You do not need to be a member of the group (i.e. having done the join process)
to get the public keys, so there is no need to define such a role. As long as you get
access to the pub-key resource (by getting authorized by the AS), you can request
those.

• Added considerations about that in the text.
• Application profiles can still define a role for those (ace-key-groupcomm-

OSCORE)

• Anything we need to add?

Issue #91 - Role/functionality of "proxy
signature checker"

Editor done

https://github.com/ace-wg/ace-key-groupcomm/issues/91

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 17

(in particular from the editor done if you think the resolution is not
sufficient)

Any other issue you’d like to bring up?

IETF 107 | Virtual | ACE WG | 2020-04-15 | Page 18

• Get ok for all editor done issues
• Include all the issues above
• Merge PR
• Submit v-06

• Work on the rest of the points (interim?)
• Submit v-07

Plan forward

