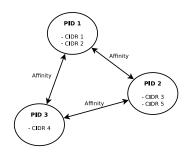
Automated Mapping Information for ALTO

Hans Seidel
hseidel@benocs.com

ALTO IETF Virtual Meeting 107

Apr 21st 2020

Problem Statement


Why automate mapping generation?

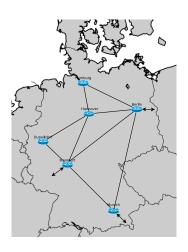
- Complexity:
 - Thousands of routers (> 3400 in large ISP)
 - Thousands of (IGP) links (> 10000 in large ISP)
- Diversity:
 - Different customers
 - Different mapping engines
 - Different requirements
 - Different capabilities
 - Different detail levels
- Actuality:
 - Changes in network should be available ASAP

There is no one size fits all Not manually handable

Getting started

- Network Map
 - CIDRs
 - Grouping Criteria
- Cost Map
 - Affinity Criteria

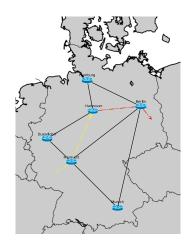
What do we need to automatically generate mapping information?


Data, Data and Data

CIDRs and Topology

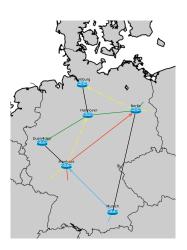
- Sources \rightarrow Routing Protocols
- IGP (ISIS/OSPF)
 - Topology
 - CIDRs
- BGP
 - Internal CIDRs (iBGP)
 - External CIDRs (eBGP)

Data from one BGP router might not be enough


- \rightarrow Multi peering points with other networks (e.g. CDN)
- \rightarrow Information from (all) edge routers necessary

CIDRs and Topology II

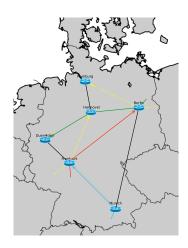
Now we can start generating maps \rightarrow Sorry, not yet


- View ends on network border
- From ISP perspective: Most traffic come from outside the network
- Problem: Routing Protocols only tell us forward path
 - \rightarrow how to get to CIDR
- network entry point cannot be derived from routing protocols

Mechanism to detect where flows enter the network required

Detecting Ingress Points

- Passive Measurement
 - Processing flow information (Netflow, sFlow)
 - Collect flow information on all border router interfaces
 - Statistically evaluate flow records to find common subnet ranges
 - Provides CIDR, router + interface information
- \rightarrow Very heavy operation



Detecting Ingress Points II

Active Measurement

- Content provider detects ingress router by tracing paths to client
 - $\rightarrow \mathsf{First}\ \mathsf{router}\ \mathsf{in}\ \mathsf{target}\ \mathsf{network}$
 - \rightarrow Detectable via IP, host name
 - → Counter part to own border router in private peering
- Channel into ALTO server to provide ingress points

Idea: Integrate such information into ALTO Map requests

Idea

Integrate information into ALTO Map requests

- Network/Cost Map requests provide additional information \rightarrow E.g. Ingress Points
- Network/Cost Map request must support HTTP POST requests
- Maps cannot be (fully) precalculated anymore
 - → Calculation must be efficient

Is this something worth pursuing?

Additional Data

Now we can start generating maps \rightarrow yes, but ...

Depending on requirements additional data might be necessary

- Performance stats (e.g. from SNMP)
- Geoinformation
- Content server information
- Type of Content
- •

Summary

- Manual maps design not feasible due to complexity, diversity and actuality
- A lot different data sources required
- Routing protocols alone are not enough
 - \rightarrow Ingress Points necessary for external sources
- Potential future work: Integrate processing relevant information in ALTO requests

Thank You

E-Mail: hseidel@benocs.com