
Carsten Bormann, CBOR interim, 2020-10-28

Packed CBOR
draft-ietf-cbor-packed-00

1

JSON, CBOR: Coding efficiency

• CBOR can be more efficient than JSON, in particular if the data model is
specifically designed for CBOR (e.g., integer labels in maps)

• Simply encoding JSON data in CBOR reaps less gain

• Significant redundancy often remains

• Can be removed by, e.g. DEFLATE (RFC 1951)

• Compression requires decompression before use, though

• Alternative: Exploiting structure and prefix sharing by “Packing”

• CBOR data item can be used while remaining packed

2

Item Sharing
(née Structure Sharing)

• Many data items nested in a larger data item repeat

• E.g., strings used for labels or enums

• Idea: Provide one copy of repeated item and share it

• Item is

• put into an item sharing array,

• referenced in the places where a copy is needed

3

Prefix/Suffix (Affix) Sharing

• data items often share a prefix or a suffix (an affix)

• E.g., initial parts of URIs are often similar

• Idea: Provide one copy of repeated affix and share it

• Shared -fix is

• put into a prefix array or suffix array,

• referenced in the places where a copy is needed

• –00 only defines this for (byte and text) strings; extend to arrays and maps

4

Structure of packed CBOR (-00)

• Packed data item is an array tagged with tag 6: 
 0 1 2 3 4 5 6

• 6()

Prefix list

Item listRump

Add a suffix list somewhere?

• Rump can reference shared
items; shared items can, too 
(yes, needs loop detection)

• Items can use a prefix
(identified by a tag) plus a
supplied suffix, or a suffix plus
a supplied prefix

5

Elements of a generalization

• Cbor-packed has two major components:

• Referents that can be used in place of a data item

• Need to use a namespace to identify what is being referenced

• Short (= early) names are good

• Items/prefixes/suffixes don’t mix much ➔ separate namespaces are good

• Tables that populate the namespaces

• –00 has two (item, prefix), self-contained

• Proposal: add dictionaries to share (!) the populations

• From outer structure in CBOR data item

• From some registered or (hash-)identified space

6

–00: efficient Item and Prefix references

• Item references: 16 simple values (1+0),  
one single-byte Tag ➔ 48+512+131072 (1+1, 1+2, 1+4)

• Prefix references: Reuse tag; use more tags (32+4096+268435456) 
Do the same (but not necessarily the same sizes) separately for suffix

• Total reservation: 4/7 simple values, 1 1+0 tag (1/24), 1/8 1+1, 1/16 1+2, …

• Worth it if we think this will be a widely used part of CBOR

• Could be less agressive and less efficient, but why?

7

How to build tables

• Position in table is relevant

• At least within a bucket:

• Items: 16, 48, 512, 131072

• Prefixes/Suffixes: 32, 4096, 268435456

• Combining imported and locally defined tables

• Use imported only? Use locally defined only (= –00)?

• When using both, sequence becomes important when a bucket overflows

8

How to reference dictionaries (external tables)

• Referencing (and table building!) scheme could be orthogonal to packing
scheme

• URIs: Identify + locate

• Hashes: Identify only

• (IANA-)Registered dictionaries: Identify; locate if known

9

Strawman: add after end of local table
Building tables from multiple sources

• Per-bucket structure (4i+3p+3s buckets total!); add at end

• Overflow goes to end of next higher bucket of same type that has space 

• Requires a defined sequence of subtables

• Local, then dictionaries in defined order?

• Define sequence in structure that provides values/references?

10

