Approaches to the problem of making PAKEs
guantum -safe

Oleg Taraskin

Vladimir Soukharev @ LLNDBFA?SEC
David Jao WKFESHL’SE) eVOIUI'ion [J

3;-,%3 UNIVERSITY OF I '"Stituiefm
Jason T. LeGrow 2y WATERLOO el

The problem

All existing “industry” PAKE protocols are quantum-insecure:

Underlying hard problems (DLP, ECDLP and factoring)

can be solved on quantum computer in polynomial time by Shor’s
algorithm.

Example

Shor’s algorithm for ECDLP: space ~ 6n qubits, time ~ 360n° (John Proos and
Christof Zalka, 2003)

Most popular curves:
ed25519 (Edwards curve)
secp256kl (Bitcoin, Ethereum)
P-256 (NIST standard)

space "~ 6*256 = 1536 qubits, time ~360*256° operations

Isogeny basics

E; , E, - elliptic curves over F,
Isogeny E; -> E5:

_ haxy) g1(xy)
oo y) = xY) " g2(x.y))
() =00

(equivalently, @(P + Q)= @(P)+ ¢(Q))

(f1, f2, 91, g are polynomials)

Degree of isogeny ¢ is max degree of f;(x, y) and f,(x, y)

Example

E;:y>=x34+x+4+1 and E,: y? = x3+4x+ 13 over Fyq

x3 — 4x% —8x — 8 x3 —6x%+5x—6
(x, ¥) = x_2)?) Y _2)3)
degp =3
A=(9,6),B=(14,2) and C=A+ B=(5,6)
@(9,6) = (14,6 1)
@ (14,2) = (17,4)
®(56) = (85)

Group homomorphism: ¢ (9, 6) + @ (14, 2) = (5, 6)

Construction of isogenies

Isogeny is a group homomorphism:

keropo ={P €E :@(P)=0}

Let’s K is some subgroup of E,

exists @, : E->E/K suchthatkerg, isK and degop, =| K |

Isogeny can be calculated by Velu’s algorithm (1971) :
Input : curve £y , K
Output: curve E,, map @

Construction of isogenies

Another way to express isogeny E -> E /K :
E > E/<Gg>
where Gy is generator of kernel group K

Tate’s theorem:
Two curves E; , E, are isogenous over Fg if and only if #E7 = #E,

Example

E;:y*=x34+x+1 and E,: y?>= x3+4x + 13

over fleld F19’ #El = #E2 =21
x) (x3 — 4x% —8x—8 x3y —6x°y+5xy—6y
x, y) =
oy x%2 —4x + 4 " x3-6x2-7x-8)
deg ¢ =3

Kernel of isogeny is a subgroup K = {oo, (2, 7), (2, 12)}
Kernel’s generators are (2, 7), (2, 12),
sodenote Gy =(2,7)or G =(2,12) E, =E{/<Gg>

Hard problem

Given E; , E, - elliptic curves over F,, #E; = #E,

Find isogeny @ between E; and E,

n -torsion subgroup
E[n] ={R€E(F;) : n*R=0c0}

E[n] is isomorphicto Z/nZ X Z/nZ (i.e. has order = n?)
ifgcd (n,q) =1

Base points P and Q € E[n] : each C € E[n] can be expressed as
C=x*P+y=*Q
where x,y € [0, n)

Supersingular curve

HE(GF(p™)) = p"+1—-t , where t—trace of Frobenius

if t ==0modp :

E is supersingular
else

E is ordinary

SIDH (Supersingular Isogeny Diffie-Hellman)
D. Jao and L. De Feo, 2011

supersingular curve over F,2 that contains subgroups E[2¢?%] and E[3°7],
where 262 = 3¢3

Select “starting” curve: y*=x° +ax + b over F

with characteristic p = 2643¢3 + 1
such that #E = (2°23°3)2 j.e. has E[2°?] and E[3°3]

Fix base points:
P, and Q, of E[2%?] - basis of Alice
P, and Q,, of E[3°3] - basis of Bob

SIDH (Supersingular Isogeny Diffie-Hellman)
D. Jao and L. De Feo, 2011

Fixed public parameters:

y*=x°+ax + bover F

{P,, Q,} - basis of E[2°°]
{P,, 0} - basis of E[3%%]

SIDH (Supersingular Isogeny Diffie-Hellman)
D. Jao and L. De Feo, 2011

Alice generates key pair:

picks up random private key a : 0 < a < 2¢?

kernel group generator G, = P, + a * Q,

calculates isogeny ¢ with kernel group generated by G :
E,=E/<G, >

maps Bob’s basis {P}, , Qp} tocurve E, : {@, (Pp), @ ,(Qp)}
sends to Bob her public key :

Eq, ©,(Py), ¢,(Qp)

SIDH (Supersingular Isogeny Diffie-Hellman)
D. Jao and L. De Feo, 2011

Upon receiving public key of Alice, Bob generates key pair:

picks up random private key b : 0< b < 3¢3
G, = P, + b = Q,: point of order 3¢3

calculates isogeny ¢, with kernel group generated by Gy, :
Eb — E/< Gb >

maps Alice’s basis {F, , Q4} to curve E}, : {@,(F,), ¢,(Qg)}
sends to Alice his public key :

Eb» Py (Pa)r @y (Qa)

SIDH (Supersingular Isogeny Diffie-Hellman)
D. Jao and L. De Feo, 2011

Bob:
Gpa =@ ,(Py) + b*p(Qp)
Epa = Eq/< Gpg >
Alice:
Gap = @, (Pa) + a*9,(Qq)
Eap = Ep/< Ggp >

Shared secret: | (Ep,) =] (Egp)

Commutative diagram

PA
E -E/< Gy >

@B

v

E/< Gy > - Egp

Ewp = EJ/<Gp>/<@B(Gy)> = E/<Gy>/<@A(Gy)>

Our solution to the problem of postquantum
PAKE

Towards Isogeny-Based Password-Authenticated
Key Establishment

Oleg Taraskin®, Vladimir Soukharev, David Jao, and Jason T. LeGrow

! Waves Platform. Moscow, Russian Federation. tog.postquant@gmail.com
* InfoSec Global. Toronto, Ontario, Canada.
vladimir.soukharev@infosecglobal.com
* Department of Combinatorics and Optimization, University of Waterloo. Waterloo,
Ontario, Canada. {djao, jlegrow}@uwaterloo.ca

Abstract. Password authenticated key establishment (PAKE) is a cryp-
tographic primitive that allows two parties who share a low-entropy se-
cret (a password) to securely establish cryptographic keys in the ab-
sence of public key infrastructure. We propose the first quantum-resistant
password-authenticated key exchange scheme based on supersingular el-
liptic curve isogenies. The scheme is built upon supersingular isogeny
Diffie-Hellman [15], and uses the password to generate permutations
which obscure the auxiliary points. We include elements of a security
proof, and discuss roadblocks to obtaining a proof in the BPR model [1].
We also include some performance results.

From SIDH to SIDH PAKE

Ephemeral public key of Alice:

Eq., ©,(Pp), ©,(Qp)

Alice calculates masked public key:
MaskedP = MaskP + @, (Py), MaskedQ = MaskQ + ¢ ,(Qp)
(where MaskP =F (“1”|| password) , MaskQ =F (“2”|| password))

Alice sends to Bob E,, MaskedP, MaskedQ

From SIDH to SIDH PAKE

Bob :
receives E,, MaskedP, Masked(Q

calculates ¢ (Pp) = MaskedP — MaskP,
¢, (Qp) = MaskedQ - Mask(Q

and get Alice’s publickey : E,, @, (Pp), ¢,(Qp)

Offline dictionary attack

Tate pairing

e(Py, Q)8 %) =e(¢_(Py), 0,(Qp))
(deg(e,) = 2°%)

Attacker has E,, MaskedP, MaskedQ
Calculates MaskF and Mask(Q; for candidates on password

if e(Py,0,)%8 P = e(MaskedP — MaskP, MaskedQ — MaskQ;)
Then password is found (with high probability)

Mobius Action

SL,(l,e) ={W e (Z/1¢Z)?*4: det (A) =1 mod [¢}
Y,(l,e) ={W € SL,(l,e) : Ais upper triangular mod [}

¥, (l,e) acts on E[l¢] X E[I®] like matrix-vector multiplication:

ie.if W= (3‘ g) then W () = (‘;‘§1§§)

SIDH PAKE

Alice masks her ephemeral publickey E,, ¢, (Py), @,(Qp) :
X\ _ <pa(Pb>)
(Ya) =V (cpa(Qb)

W, is a function of password and j-invariant of E,
Sends Eg, Xg, ¥z to Bob

Bob, upon receiving E,, X,, ¥ :

checks that e(P,, Q,)948®a) ==¢(X,, ¥,) -if not, abort

SIDH PAKE

If pairing check is ok:
Bob unmasks masked ephemeral publickey E_ , X,, ¥ :

calculates inverse Wy from matrix W, = H, (password, j(E,))
restores ephemeral public key :

(Geo) =i ()

And obtains “clear” SIDH ephemeral public key Eg, @ (Pp), ®,(Qp)

SIDH PAKE

Bob generates his key pair :
picks up random private key 5: 0< b < 3€3
calculates public key:
Ey =E/< Py+D0*Qp >, @, (F), ¢,(Qg)
masks his public key:
Wy, = Hpg (password, j(Ep))
X} P,
(%) =vs (grten)

sends E,, X, , ¥, toAlice

SIDH PAKE
Calculates shared secret:
Epa = Eq /< P, (Pp) + b*CPa(Qb) >

Shared secret :
KDF((Eq, Xa, o) 1 (Ep, X, o) | J (Epa) |1 Wa || Wg)

SIDH PAKE

Upon receiving E;, , X}, , Y, from Bob, Alice:
checks that e(P,, 0,)9¢8®b) == (X, , ¥,) - if not, abort

. cpb(Pa)) —w=1 Xb
demasks : (<Pb(Qa) Wy (K?)

Eab — Eb /< cpb(Pa) + a*(Pb(Qa) >
Shared secret:
KDF((ECLIXCLI)6,) || (Eb/Xbr }19) ||](Eab) || LIJA || LIJB)

Practical aspects

Curves:
from SIKE algorithm (now in a second round of NIST Post-Quantum
Cryptography Standardization Process)

Ephemeral key sizes:
just the same as in SIDH
(for SIKE’s curves p434 and p503 : 330 and 378 bytes resp.)

Time:
from 1,7 to 2 of “pure” SIDH:
(for SIKE’s curves p434 and p503 : 142 and 228 of 10° clock cycles resp.
Ubuntu 18.04, 1.6 GHz Intel Core i5-8250U)

Questions ?

