Approaches to the problem of making PAKEs quantum -safe

The problem

All existing "industry" PAKE protocols are quantum-insecure:

Underlying hard problems (DLP, ECDLP and factoring)
can be solved on quantum computer in polynomial time by Shor's algorithm.

Example

Shor's algorithm for ECDLP: space $\sim 6 n$ qubits, time $\sim 360 n^{3}$ (John Proos and Christof Zalka, 2003)

Most popular curves:
ed25519 (Edwards curve)
secp256k1 (Bitcoin, Ethereum)
P-256 (NIST standard)
space $\sim 6^{*} 256=1536$ qubits, time $\sim 360 * 256^{3}$ operations

Isogeny basics

E_{1}, E_{2} - elliptic curves over F_{q} Isogeny $E_{1} \rightarrow E_{2}$:
$\varphi(x, y)=\left(\frac{f_{1}(x, y)}{f_{2}(x, y)}, \frac{g_{1}(x, y)}{g_{2}(x, y)}\right)$
$\varphi(\infty)=\infty$
(equivalently, $\varphi(P+Q)=\varphi(P)+\varphi(Q)$)
($f_{1}, f_{2}, g_{1}, g_{2}$ are polynomials)

Degree of isogeny φ is max degree of $f_{1}(x, y)$ and $f_{2}(x, y)$

Example

$$
E_{1}: y^{2}=x^{3}+x+1 \text { and } E_{2}: y^{2}=x^{3}+4 x+13 \text { over } F_{19}
$$

$$
(x, y)=\left(\frac{x^{3}-4 x^{2}-8 x-8}{(x-2)^{2}}, y \frac{x^{3}-6 x^{2}+5 x-6}{(x-2)^{3}}\right)
$$

$\operatorname{deg} \varphi=3$
$A=(9,6), B=(14,2)$ and $C=A+B=(5,6)$
$\varphi(9,6)=(14,1)$
$\varphi(14,2)=(17,4)$
$\varphi(5,6)=(8,5)$
Group homomorphism: $\varphi(9,6)+\varphi(14,2)=\varphi(5,6)$

Construction of isogenies

Isogeny is a group homomorphism:
$\operatorname{ker} \varphi=\{P \in E: \varphi(P)=\infty\}$
Let's K is some subgroup of E,
exists $\varphi_{K}: E$-> E / K such that $\operatorname{ker} \varphi_{K}$ is K and $\operatorname{deg} \varphi_{K}=|K|$

Isogeny can be calculated by Velu's algorithm (1971) :
Input : curve E_{1}, K
Output: curve $E_{2}, \operatorname{map} \varphi$

Construction of isogenies

Another way to express isogeny $E->E / K$:
$E->E /<G_{K}>$
where G_{K} is generator of kernel group K

Tate's theorem:
Two curves E_{1}, E_{2} are isogenous over F_{q} if and only if $\# E_{1}=\# E_{2}$

Example

$E_{1}: y^{2}=x^{3}+x+1$ and $E_{2}: y^{2}=x^{3}+4 x+13$
over field $F_{19}, \quad \# E_{1}=\# E_{2}=21$
$\varphi(x, y)=\left(\frac{x^{3}-4 x^{2}-8 x-8}{x^{2}-4 x+4}, \frac{x^{3} y-6 x^{2} y+5 x y-6 y}{x^{3}-6 x^{2}-7 x-8}\right)$
$\operatorname{deg} \varphi=3$
Kernel of isogeny is a subgroup $K=\{\infty,(2,7),(2,12)\}$
Kernel's generators are $(2,7),(2,12)$,
so denote $G_{K}=(2,7)$ or $G_{K}=(2,12) \quad E_{2}=E_{1} /<G_{K}>$

Hard problem

Given E_{1}, E_{2} - elliptic curves over $F_{q}, \quad \# E_{1}=\# E_{2}$
Find isogeny φ between E_{1} and E_{2}

n-torsion subgroup

$E[n]=\left\{R \in E\left(\overline{F_{q}}\right): n^{*} R=\infty\right\}$
$E[n]$ is isomorphic to $\mathrm{Z} / \mathrm{nZ} \times \mathrm{Z} / \mathrm{nZ}$ (i.e. has order $=\mathrm{n}^{2}$)
if $\operatorname{gcd}(n, q)=1$

Base points P and $Q \in E[n]$: each $C \in E[n]$ can be expressed as $C=x * P+y * Q$
where $x, y \in[0, \mathrm{n})$

Supersingular curve
\#E $\left(\operatorname{GF}\left(p^{n}\right)\right)=p^{n}+1-t$, where t-trace of Frobenius
if $t==0 \bmod p:$
E is supersingular
else
E is ordinary

SIDH (Supersingular Isogeny Diffie-Hellman) D. Jao and L. De Feo, 2011

supersingular curve over $F_{p^{2}}$ that contains subgroups $\mathrm{E}\left[2^{e 2}\right]$ and $\mathrm{E}\left[3^{e 3}\right]$, where $2^{e 2} \approx 3^{e 3}$

Select "starting" curve: $y^{2}=x^{3}+a x+b$ over $F_{p^{2}}$
with characteristic $p=2^{e 2} 3^{e 3} \pm 1$ such that $\# E=\left(2^{e 2} 3^{e 3}\right)^{2}$ i.e. has $\mathrm{E}\left[2^{e 2}\right]$ and $\mathrm{E}\left[3^{e 3}\right]$

Fix base points:
P_{a} and Q_{a} of $\mathrm{E}\left[2^{e 2}\right]$ - basis of Alice
P_{b} and Q_{b} of $\mathrm{E}\left[3^{e 3}\right]$ - basis of Bob

SIDH (Supersingular Isogeny Diffie-Hellman) D. Jao and L. De Feo, 2011

Fixed public parameters:
$y^{2}=x^{3}+a x+b$ over $F_{p^{2}}$
$\left\{P_{a}, Q_{a}\right\}$-basis of $\mathrm{E}\left[2^{e 2}\right]$
$\left\{P_{b}, Q_{b}\right\}$ - basis of $\mathrm{E}\left[3^{e 3}\right]$

SIDH (Supersingular Isogeny Diffie-Hellman) D. Jao and L. De Feo, 2011

Alice generates key pair:
picks up random private key $a: 0<a<2^{e 2}$
kernel group generator $G_{a}=P_{a}+a * Q_{a}$
calculates isogeny φ_{a} with kernel group generated by G_{a} :
$E_{a}=E /<G_{a}>$
maps Bob's basis $\left\{P_{b}, Q_{b}\right\}$ to curve $E_{a}:\left\{\varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)\right\}$ sends to Bob her public key :

$$
E_{a}, \varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)
$$

SIDH (Supersingular Isogeny Diffie-Hellman) D. Jao and L. De Feo, 2011

Upon receiving public key of Alice, Bob generates key pair:
picks up random private key $b: 0<b<3^{e 3}$
$G_{b}=P_{b}+b * Q_{b}:$ point of order $3^{e 3}$
calculates isogeny φ_{b} with kernel group generated by G_{b} :
$E_{b}=E /<G_{b}>$
maps Alice's basis $\left\{P_{a}, Q_{a}\right\}$ to curve $E_{b}:\left\{\varphi_{b}\left(P_{a}\right), \varphi_{b}\left(Q_{a}\right)\right\}$ sends to Alice his public key :

$$
E_{b}, \varphi_{b}\left(P_{a}\right), \varphi_{b}\left(Q_{a}\right)
$$

SIDH (Supersingular Isogeny Diffie-Hellman) D. Jao and L. De Feo, 2011

Bob:

$$
\begin{aligned}
& G_{b a}=\varphi_{a}\left(P_{b}\right)+b * \varphi_{a}\left(Q_{b}\right) \\
& E_{b a}=E_{a} /<G_{b a}>
\end{aligned}
$$

Alice:

$$
\begin{aligned}
& G_{a b}=\varphi_{b}\left(P_{a}\right)+a * \varphi_{b}\left(Q_{a}\right) \\
& E_{a b}=E_{b} /<G_{a b}>
\end{aligned}
$$

Shared secret : $j\left(E_{b a}\right)=j\left(E_{a b}\right)$

Commutative diagram

Our solution to the problem of postquantum PAKE

Towards Isogeny-Based Password-Authenticated Key Establishment
Oleg Taraskin ${ }^{1}$, Vladimir Soukharev, David Jao, and Jason T. LeGrow
${ }^{1}$ Waves Platform. Moscow, Russian Federation. tog.postquant@gmail.com
${ }^{2}$ InfoSec Global. Toronto, Ontario, Canada.
vladimir.soukharev@infosecglobal.com
${ }^{3}$ Department of Combinatorics and Optimization, University of Waterloo. Waterloo, Ontario, Canada. \{djao, jlegrow\}@uwaterloo.ca

Abstract

Password authenticated key establishment (PAKE) is a cryptographic primitive that allows two parties who share a low-entropy secret (a password) to securely establish cryptographic keys in the absence of public key infrastructure. We propose the first quantum-resistant password-authenticated key exchange scheme based on supersingular elliptic curve isogenies. The scheme is built upon supersingular isogeny Diffie-Hellman [15], and uses the password to generate permutations which obscure the auxiliary points. We include elements of a security proof, and discuss roadblocks to obtaining a proof in the BPR model [1]. We also include some performance results.

From SIDH to SIDH PAKE

Ephemeral public key of Alice:

$$
E_{a}, \varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)
$$

Alice calculates masked public key:

$$
\begin{aligned}
& \text { Masked } P=\operatorname{Mask} P+\varphi_{a}\left(P_{b}\right), \text { Masked } Q=\operatorname{MaskQ}+\varphi_{a}\left(Q_{b}\right) \\
& (\text { where MaskP }=\mathrm{F}(" 1 "| | \text { password) }, \operatorname{Mask} Q=\mathrm{F}(" 2 "| | \text { password)) }
\end{aligned}
$$

Alice sends to Bob E_{a}, MaskedP, MaskedQ

From SIDH to SIDH PAKE

Bob :
receives E_{a}, MaskedP, MaskedQ

$$
\begin{aligned}
\text { calculates } \varphi_{a}\left(P_{b}\right) & =\text { Masked } P-\operatorname{Mask} P \\
\varphi_{a}\left(Q_{b}\right) & =\text { Masked } Q-\operatorname{Mask} Q
\end{aligned}
$$

and get Alice's public key : $E_{a}, \varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)$

Offline dictionary attack

Tate pairing
$e\left(P_{b}, Q_{b}\right)^{\operatorname{deg}\left(\varphi_{a}\right)}=e\left(\varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)\right)$
$\left(\operatorname{deg}\left(\varphi_{a}\right)=2^{e 2}\right)$

Attacker has E_{a}, MaskedP, MaskedQ
Calculates Mask_{i} and MaskQ_{i} for candidates on password
If $e\left(P_{b}, Q_{b}\right)^{\operatorname{deg}\left(\varphi_{a}\right)}=e\left(\right.$ Masked $^{2}-\operatorname{Mask}_{i}$, Masked $\left.Q-\operatorname{Mask}_{i}\right)$
Then password is found (with high probability)

Möbius Action

$S L_{2}(l, e)=\left\{\Psi \in\left(Z / l^{e} Z\right)^{2 \times 2}: \operatorname{det}(\mathrm{A})=1 \bmod l^{e}\right\}$
$r_{2}(l, e)=\left\{\Psi \in S L_{2}(l, e): \mathrm{A}\right.$ is upper triangular $\left.\bmod l\right\}$
$r_{2}(l, e)$ acts on $\mathrm{E}\left[l^{e}\right] \times \mathrm{E}\left[l^{e}\right]$ like matrix-vector multiplication:
i.e. if $\Psi=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ then $\Psi\binom{X}{Y}=\binom{\alpha * X+\beta * Y}{\gamma * X+\delta * Y}$

SIDH PAKE

Alice masks her ephemeral public key $E_{a}, \varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)$:
$\binom{X_{a}}{Y_{a}}=\Psi_{A}\binom{\varphi_{a}\left(P_{b}\right)}{\varphi_{a}\left(Q_{b}\right)}$
Ψ_{A} is a function of password and j-invariant of E_{a}
Sends E_{a}, X_{a}, Y_{a} to Bob

Bob, upon receiving E_{a}, X_{a}, Y_{a} :
checks that $e\left(P_{b}, Q_{b}\right)^{\operatorname{deg}\left(\varphi_{a}\right)}==e\left(X_{a}, Y_{a}\right)$ - if not, abort

SIDH PAKE

If pairing check is ok:

Bob unmasks masked ephemeral public key E_{a}, X_{a}, Y_{a} :
calculates inverse Ψ_{A}^{-1} from matrix $\Psi_{A}=H_{A}$ (password, $j\left(E_{a}\right)$)
restores ephemeral public key :

$$
\binom{\varphi_{a}\left(P_{b}\right)}{\varphi_{a}\left(Q_{b}\right)}=\Psi_{A}^{-1}\binom{X_{a}}{Y_{a}}
$$

And obtains "clear" SIDH ephemeral public key $E_{a}, \varphi_{a}\left(P_{b}\right), \varphi_{a}\left(Q_{b}\right)$

SIDH PAKE

Bob generates his key pair :
picks up random private key $b: 0<b<3^{e 3}$
calculates public key:
$E_{b}=E /<P_{b}+b * Q_{b}>, \varphi_{b}\left(P_{a}\right), \varphi_{b}\left(Q_{a}\right)$
masks his public key:
$\Psi_{B}=H_{B}$ (password, $\left.j\left(E_{b}\right)\right)$
$\binom{X_{b}}{Y_{b}}=\psi_{B}\binom{\varphi_{b}\left(P_{a}\right)}{\varphi_{b}\left(Q_{a}\right)}$
sends E_{b}, X_{b}, Y_{b} to Alice

SIDH PAKE

Calculates shared secret:

$$
E_{b a}=E_{a} /<\varphi_{a}\left(P_{b}\right)+b * \varphi_{a}\left(Q_{b}\right)>
$$

Shared secret :
$\operatorname{KDF}\left(\left(E_{a}, X_{a}, Y_{a}\right)\left\|\left(E_{b}, X_{b}, Y_{b}\right)\right\| j\left(E_{b a}\right)\left\|\Psi_{A}\right\| \Psi_{B}\right)$

SIDH PAKE

Upon receiving E_{b}, X_{b}, Y_{b} from Bob, Alice: checks that $e\left(P_{a}, Q_{a}\right)^{\operatorname{deg}\left(\varphi_{b}\right)}=e\left(X_{b}, Y_{b}\right)$ - if not, abort

$$
\begin{aligned}
& \text { demasks: }\binom{\varphi_{b}\left(P_{a}\right)}{\varphi_{b}\left(Q_{a}\right)}=\psi_{B}^{-1}\binom{X_{b}}{Y_{b}} \\
& E_{a b}=E_{b} /<\varphi_{b}\left(P_{a}\right)+a * \varphi_{b}\left(Q_{a}\right)>
\end{aligned}
$$

Shared secret:

$$
\operatorname{KDF}\left(\left(E_{a}, X_{a}, Y_{a}\right)\left\|\left(E_{b}, X_{b}, Y_{b}\right)\right\| j\left(E_{a b}\right)\left\|\Psi_{A}\right\| \Psi_{B}\right)
$$

Practical aspects

Curves:
from SIKE algorithm (now in a second round of NIST Post-Quantum Cryptography Standardization Process)

Ephemeral key sizes:
just the same as in SIDH
(for SIKE's curves p434 and p503: 330 and 378 bytes resp.)

Time:
from 1,7 to 2 of "pure" SIDH:
(for SIKE's curves p434 and p503 : 142 and 228 of 10^{6} clock cycles resp.
Ubuntu 18.04, 1.6 GHz Intel Core i5-8250U)

Questions ?

