
NPRFs and their Application to MLS

Chris Brzuska1, Jan Winkelmann

Aalto University

Abstract. Noise, Signal and TLS 1.3 use key derivation functions (KDF)
and pseudorandom functions (PRF) to combine key material to obtain
a secure key whenever at least one of the input keys is secure. Security
analyses of the aforementioned protocols either analyze the protocol in
the random oracle model or, if only two keys are combined at a time,
assume that in the KDF/PRF, the role of the key and the message are
interchangeable. Thus, protocols typically rely on the ad hoc assumption
of a dual KDF or a dual PRF (DPRF).
To combine more than two secrets, state-of-the-art protocols apply the
DPRF multiple times sequentially, each time evaluating it on one new
secret as well as piping in the result of the previous DPRF call. The
resulting number of sequential DPRF evaluations is thus linear in the
number of keys to be combined.
We propose n-pseudorandom functions (NPRFs) as a new primitive
which combines an arbitrary number of keys. We provide a security model
for our multi-instance, multi-key primitive. We then provide a practical
construction of NPRFs which is parallelizable and, in each of the parallel
branches (one for each secret), requires only 1 PRF evaluation, indepen-
dently of the number of keys to be combined. It is based on the standard
assumption that HMAC is a PRF.
We compare the security of our NPRF construction with the aforemen-
tioned piping construction under collision attacks, i.e., colliding key val-
ues, colliding key names and colliding context values. By adding one
or two more PRF evaluations in each of the parallel branches, we im-
prove the security of our basic NPRF to be on the same or higher
level of collision-resistance than the aforementioned piping construction.
These extended constructions additionally assume that salted HMAC is
a collision-resistant hash-function.
As a case study, we explore key derivation in the current draft of the
Message Layer Security (MLS) IETF standard, and provide justification
for pull request 337 1 which is a change to the MLS standard that we
suggest, based on our NPRF construction.

1 https://github.com/mlswg/mls-protocol/pull/337

1 Introduction

Extract
Extract

Extract
Extract

key0

key1

key2

key3

key4

keyfinal

Expand

Label1 , []

Expand

Label2 , []

Expand

Label3 , []

Fig. 1: NPRF in
practice.

Aiming for security under strong adversarial corrup-
tion capabilities, novel key exchange protocols combine
key material in complex ways and aim for security as
long as at least one of the input keys is secure, or
honest in the language of the recent TLS 1.3 analysis
by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and
Kohlweiss [BDF+]. For example, Signal [CCD+16] and
the Noise Framework [DRS20] are based on static and
ephemeral Diffie-Hellman (DH) keys for each party and
provide security if at least one out of the static-static,
static-ephemeral, ephemeral-ephemeral combinations is
honest. TLS 1.3 [Res18,BDF+] implements a sophis-
ticated combiner: Taking session resumption into ac-
count, the mixed mode of TLS-PSK and TLS-DH pro-
vides security if either the DH secret is honest or the
current PSK is honest, where the honesty of the PSK
is computed recursively, based on whether the previous
DH secret or previous PSK was honest. MLS allows to
combine an ephemeral secret with a pre-shared key.

The aforementioned protocols require a pseudoran-
domness combiner which returns a pseudorandom key
whenever at least one of the input keys was (pseudo-
)random and secret from the adversary. Additionally,
many protocol designs also aim to avoid collisions on
the resulting key, e.g., to prevent unknown key-share
attacks (page 234 in [JKSS10]).

The de-facto state-of-the-art methodology for real-
life protocols is to use a variant of the Extract-then-
Expand approach, suggested by Krawczyk in his design
of HKDF [Kra10]. Namely, Extract is modeled as a
computational extractor which takes as input a public, uniformly dis-
tributed salt and initial key material with high computational average
min-entropy and returns a pseudorandom value. Protocols such as TLS,
Noise and the current draft of MLS combine two keys by making a call
to the Extract function of HKDF, using one key as a salt and the other
key as initial key material. When combining several keys, the current
MLS draft makes sequential calls to Extract, each time piping in the
previous key value as one of the inputs. Consistently with the Extract-

then-Expand design, the calls to Extract are interleaved with calls to
Expand. See Figure 1 for this construction principle.

TLS 1.3 also makes three sequential calls2 to Extract and interleaves
the sequential calls with calls to Expand in order to safely derive further
keys from intermediate secrets.

Comparison of real and originally intended use There is a discrepancy
between using Extract as a dual PRF and the original design rationale
underlying the Extract-then-Expand design [Kra10]. Namely, the original
design rationale considers the following scenario for Extract:

(E1) Key material is used a single time.
(E2) The salt is chosen uniformly at random and independently of the key

material.
(E3) The salt is public.

In practice, two (or more) parties in a protocol perform operations on
key material and, in case of an active attack, might use the same key ma-
terial with several, different salts the latter of which are partially under
adversarial control and might depend on the secret. Thus, in the afore-
mentioned use cases of the Extract function, any of the following can
occur:

(P1) Key material is used twice or more.
(P2) The salt is partially under adversarial control and can depend on the

key material.
(P3) Rather than on the secrecy of the key material, we rely on the secrecy

of a uniformly random salt S and treat Extract(S, .) as a PRF.

Extract is typically implemented by HMAC, and similarly, Expand is
typically implemented by HMAC. For Expand, HMAC is assumed to be
a PRF [Kra10], and, in fact, this assumption is equivalent to (P3). Thus,
the Extract-then-Expand already relies on (P3) being true, and it is not
an additional assumption3. In their article on OPTLS [KW15], Krawczyk
and Wee also explain that (P3) is a reasoneable assumption for HMAC
in addition to the assumption that HMAC is a strong extractor. Interest-
ingly, in their proof of OPTLS, they rely on (P3) and on the single-use,
random salt security of the extractor (unlike what is mentioned in (P1)

2 The first call extracts from a pre-shared key, the second call feeds in the Diffie-
Hellman secret and the third call to Extract —currently feeding a constant— os-
tensibly supports later integration of an additional post-quantum secure secret.

3 Note that this assumption is usually only made for Expand and not for Extract,
blurring the lines between the purpose of the two.

and (P2)). I.e., their argument works provided that there are other cryp-
tographic mechanisms which ensure that the salt is pseudorandom despite
adversarial inference and prevent the adversary from modifying the tran-
script (or at least the part of the transcript which affects the computation
of the key and the salt). In the absence of such mechanisms (or if such
mechanisms fail or if authentication is performed only later), one needs
to provide security in a setting where key material is used multiple times.
Here, the assumption of a single-use extractor does not suffice. Which
other assumptions could be used instead?

To answer this question, an important note on the OPTLS design is
that the two keys which are input to the Extract function in OPTLS al-
ready come from calls to Extract-then-Expand. Barak, Dodis, Krawczyk,
Pereira, Pietrzak, Standaert, and Yu Yu [BDK+11] point out that extrac-
tor assumptions might break down (at least in theory) when the adver-
sary knows the pre-image of a salt which was generated by an Expand call.
However, when the initial keying material is already a secret and pseu-
dorandom value, then one might simply rely on the pseudorandomness of
the initial keying material. I.e., one might want assume that Extract is
a good pseudorandom function in a dual sense, i.e., regardless of whether
the salt or the keying material is treated as a key of the function.

In TLS 1.3 [Res18] (different from its predecessor OPTLS), one needs
to additionally assume that security even holds when the key material is
not uniform [BDF+], since Diffie-Hellman keys are not extracted before
they are used in a dual PRF. This slight weakness in the design, poten-
tially, is due to the misnomer of calling the dual pseudorandom function
Extract. It might be useful to rename such calls to HMAC DualExpand

rather than Extract, since this seems to more accurately reflect the as-
sumptions.

Dual pseudorandomness of HMAC for uniformly random keys might
be a plausible assumption, but it is not yet widely studied. The sugges-
tions made in this paper, make this assumption unnecessary for newly
designed protocols and, in addition, allows us to efficiently combine more
than two keys, as is needed in MLS, Signal and Noise.

Goal We design an n-input pseudorandom function for any n ∈ N (NPRF)
for the use-case of combining multiple keys. In particular, our NPRF

(N1) takes an arbitrary number of keys.

(N2) returns a pseudo-random key whenever at least one input key was
(pseudo-)random and secret.

(N3) is built on the (standard) pseudorandomness and collision-resistance
properties of HMAC.

(N4) has equal or higher parallel and overall efficiency than the current,
popular NPRF construction (Fig. 1).

Ex
pa

nd0, ctx

Ex
pa

nd1, ctx

Ex
pa

nd2, ctx

Ex
pa

nd3, ctx

Ex
pa

nd4, ctx

keyfinal

key0 key1 key2 key3 key4

Fig. 2: New NPRF construction.

We present our
NPRF construction
in Figure 2. We sug-
gest to use a unique
context value ctx to
derive a key value
from each of the in-
put keys and to xor
the result. Here, ctx
needs to be the same
value in all of the
Expand calls, thereby
foregoing the multi-
ple use of the same key material with different keys, since changing ctx
in one position changes it in all other positions as well, thus leading to
new key material in all calls. Uniqueness of the ctx means that the NPRF
shall not be called with the same ctx twice.

0, ctx

1, ctx

2, ctx

3, ctx

4, ctx

label0, ctx
label1, ctx
label2, ctx
label3, ctx
label4, ctx
label5, ctx
label6, ctx

keyfinal0
keyfinal1
keyfinal2
keyfinal3
keyfinal4
keyfinal5
keyfinal6

Expand

Expand

Expand

Expand

Expand

Expand

key0 key1 key2 key3 key4

Fig. 3: crNPRF deriving multiple keys.

This construction
combines an arbitrary
number of keys, has
low parallel complex-
ity, and its secu-
rity follows from the
PRF-security of the
Expand function. In
TLS 1.3, the piping
construction in Fig-
ure 1 expands some
of the intermediate
keys to export early
traffic keys (which
might justify the pip-
ing to some extent).
As the key schedule
in MLS does not ex-
port early keys, the

intermediate keys in MLS might not be needed. The construction in Fig-
ure 2 is secure against re-ordering attacks since the Expand function takes
the position as part of the input. Such re-ordering attacks of the xor-
combiner in a similar dual PRF construction were previously observed
by Bellare and Lysanskaya [BL15] and are prevented by including the
position. As both Expand and Extract are typically implemented via an
HMAC evaluation, let us compare the complexity of the construction in
Figure 2 and the construction in Figure 1 by their number of HMAC eval-
uations. The construction in Figure 1 has 9 sequential HMAC evaluations
while our construction only has 5 parallel HMAC evaluations.

Security against colliding outputs and derivation of multiple keys Xor is
not a collision-resistant operation. When all input keys are known to the
adversary, the adversary might be able to trigger a collision on the output

0, h, ctx

key1

1, h, ctx 2, h, ctx 3, h, ctx 4, h, ctx

"name"
"key"

"name"
"key"

key1

"name"
"key"

"name"
"key"

key1

"name"
"key"

h0 h1 h2 h3 h4

h = (h0,h1,h2,h3,h4)

injective encoding of tuples

Suggestion:
- fix upper length on hi
- prefix each value with
length and concatenate

label0, h, ctx
label1, h, ctx
label2, h, ctx
label3, h, ctx
label4, h, ctx
label5, h, ctx
label6, h, ctx

keyfinal0
keyfinal1
keyfinal2
keyfinal3
keyfinal4
keyfinal5
keyfinal6

Expand

Expand

Expand

Expand

Expand

Expand
Expand

Expand

Expand

Expand

Expand

key0 key1 key2 key3 key4

Fig. 4: crNameNPRF.

key even when the in-
put keys to the con-
struction are unique.
Thus, one can apply
an additional Expand
operation on the out-
put key which, again,
uses the same unique
context value ctx as
the one which was
used in the Expand

step before the xor.
In summary, the first
time, the uniqueness
of the context is used
to obtain a pseu-
dorandom key, and
the second time, the
uniqueness of the con-
text is used to obtain
uniqueness of the output. We refer to this primitive as collision-resistant
NPRF (crNPRF). See Figure 3 for a construction. TLS 1.3 and MLS
each derive multiple keys from the same secret, in line with the intended
purpose of the Expand function. Thus, the final Expand operation simul-
taneously achieves uniqueness of outputs and allows us to derive multiple
keys. One should use the pair (Label , ctx) as context value for the final

Expand call with different values Label and the same ctx value, see bottom
of Figure 3.

Security against colliding context values and inputs The security of the
construction in Figure 2 relies crucially on the uniqueness of the context
value ctx . In turn, standard DPRF assumptions typically do not have the
requirement of such a unique ctx value and instead rely on the uniqueness
of the input keys. To which extent is it hard, in practice, to find such
unique values ctx? In the case that we have unique keys, can we perhaps
harvest those to obtain unique ctx values?

0, ctx

1, ctx 2, ctx 3, ctx 4, ctx

label0, ctx
label1, ctx
label2, ctx
label3, ctx
label4, ctx
label5, ctx
label6, ctx

keyfinal0
keyfinal1
keyfinal2
keyfinal3
keyfinal4
keyfinal5
keyfinal6

Expand

Expand

Expand

Expand

Expand

Expand

key0 key1 key2 key3 key4

Extract

Extract

Extract

Extract

Extract

saltxtr saltxtr saltxtr saltxtr saltxtr

Fig. 5: crNKDF.

Interestingly, if we
have a unique pub-
lic name for each
key (Here, unique-
ness of the name
refers to each name
only pointing to a
single key.), the or-
dered list of such
public names of keys
can serve as ctx . If
one derives keys from
asymmetric cryptog-
raphy such as a Diffie-
Hellman secret, public-
keys naturally give
rise to names of se-
crets. E.g., a suitable
public name for the
secret Hash(salt , gxy)
would be (salt , X, Y) with X = gx and Y = gy. These public names col-
lide if and only if the secret keys collides. The same holds if one derives
keys only based on symmetric cryptography: Namely, one can preceed the
crNPRF computation by an additional Expand to derive a public name
for each key. This name is unique if and only if the input keys are unique,
assuming collision-resistance of Expand. See Figure 4 for the resulting
construction which we refer to as crNameNPRF.

Generalization to arbitrary key material We define composable security
notions for our primitives using state separation, as suggested in [BDF+18].

DH

Extract

Expand

XOR

crPRFsaltcrprf

saltkdf
or saltodh

cr
N

KD
FD

H
N

KD
F

cr
D

H
N

KD
F

N
PR

F

cr
N

PR
F

N
KD

F

Fig. 6: Overview over constructions

We show that NPRFs, crN-
PRFs and their named vari-
ant crNameNPRFs are com-
posable with arbitrary key
material. I.e., if the key ma-
terial has high entropy, but
is not pseudorandom, then
one can first use an Extract

step to obtain a pseudoran-
dom key, thus obtaining key derivation function (KDF) variants of the
NPRF concept. We call the resulting notions NKDF, crNKDF and crNa-
meNKDF, respectively. We illustrate the crNKDF in Figure 5.

init_secret_[n-1]	(or	0)

Extract

key1

"derived",	""

PSK	(or	0)

Extract

"mls	1.0	welcome",	""
"sender	data",					GroupContext_[n]
"handshake",							GroupContext_[n]
	"app",												GroupContext_[n]
"exporter",								GroupContext_[n]
"confirm",									GroupContext_[n]
"init",												GroupContext_[n]
															

commit_secret

epoch_secret

early_secret

welcome_secret
sender_data_secret
handshake_secret
application_secret
exporter_secret
confirmation_key
init_secret_[n]

Expand
Expand

Fig. 7: Current MLS key derivation.

Alternatively, the keys
might also be obtained from a
Diffie-Hellman secret; we call
the resulting construction a
DHNKDF or crDHNKDF.
We chose to include the
discussion of Diffie-Hellman
keys, since they are a com-
mon source of key mate-
rial and require the proto-
cols to rely on the Ora-
cle Diffie-Hellman (ODH) as-
sumption [ABR01,BFGJ17]
which leads to a slightly
different analysis than the
(cr)NKDF case. We return to
this matter in Section 3.3.

Note that the Name trans-
formation is not needed for
(cr)DHNKDF, as the canon-
ically ordered pair of public
Diffie-Hellman shares always
constitutes a useful public
name for a key and thus, derivation of a public name from a symmet-
ric key is not needed. Figure 6 provides an overview over the notions and
constructions which we suggest. The figure omits the NameNKDF and
NameNPRF variants which add a simple pre-processing step applied to
the symmetric key material. Observe in Figure 6 the analogy between ex-

traction from Diffie-Hellman key material and non-uniform key material.
We here continue to follow the KDF principle of universal applicability.

Mixed key material Our analysis also extends to the case that the key
material is mixed, i.e., some might be drawn uniformly at random, some
might be extracted from a high-entropy secret and some might be derived
from a Diffie-Hellman secret. We return to mixed material in our case
study of the MLS key derivation which follows next.

Application to MLS In Pull Request 3374, we suggest to replace the
current piping construction by our crNPRF construction. Figure 7 depicts
the current construction and Figure 8 depicts our suggestion according
to Pull Request 337, a straightforward

init_secret_[n-1]	(or	0)

0, ctx

ctx:=GroupContext_[n]

"mls	1.0	welcome",	ctx
"sender	data",					ctx
"handshake",							ctx
	"app",												ctx
"exporter",								ctx
"confirm",									ctx
"init",												ctx
															

epoch_secret

welcome_secret
sender_data_secret
handshake_secret
application_secret
exporter_secret
confirmation_key
init_secret_[n]

Expand

PSK	(or	0)

commit_secret

1, ctx 2, ctx

Expand

Expand

Expand

Fig. 8: MLS crNPRF.

adoption of the previously discussed
crNPRF approach. MacMillion raised
the concern that key material might
not be uniformly distributed5. We
agree that this applies to the PSK,
because we do not have control over
its generation. We suggest to add an
Extract step for pre-processing of
the PSK. We here suggest to sam-
ple a random fixed salt and hard-
code it into the protocol description
of MLS at the point of protocol stan-
dardization. This avoids multiple use
the PSK key material, as this would
violate the single-use security of the
computational extractor. Of course, a
fixed salt could potentially allow the
adversary to influence the PSK gen-
eration in a way which depends on
the salt, but this seems less plausi-
ble/risky than the dangers of multiple
extraction from the same key material.
It does not seem necessary to add an
Extract step for pre-processing of the
other key material, since the other key

4 https://github.com/mlswg/mls-protocol/pull/337
5 https://github.com/mlswg/mls-protocol/pull/337#pullrequestreview-422971601

material is either (1) derived from other key material via HMAC and thus
already pseudorandom or (2) under adversarial control and thus would
not become pseudorandom even when Extract is applied to it. We depict
this suggestion in Figure 9.

init_secret_[n-1]	(or	0)

0, ctx

ctx:=GroupContext_[n]

"mls	1.0	welcome",	ctx
"sender	data",					ctx
"handshake",							ctx
	"app",												ctx
"exporter",								ctx
"confirm",									ctx
"init",												ctx
															

epoch_secret

welcome_secret
sender_data_secret
handshake_secret
application_secret
exporter_secret
confirmation_key
init_secret_[n]

Expand

PSK	(or	0)

commit_secret

1, ctx 2, ctx

Expand

Expand

Expand

Extract

Scr

Fig. 9: MLS crNPRF.

Barnes and MacMillion6 both sug-
gested the use of a protocol variable
called the group context as unique con-
text value. None of the other work-
ing group members raised concern re-
garding the additional requirement of
a unique value. Thus, at the cur-
rent point (June 9, 2020), we would
conclude that the additional Expand

step of the NameNPRF construction
is not needed. In conclusion, the con-
struction in Figure 9 as represents a
suggestion which addresses all con-
cerns voiced so far. (Further comments
pointed out typos and suggested a dif-
ferent encoding of tuples. From our
perspective, any injective encoding of
tuples is suitable. We do not have a
preference, as it does not concern the
cryptographic core of our proposal.)

Efficiency Comparison The crN-
PRF/KDF construction depicted in
Figure 9 has depth 2 or 3 in terms of
HMAC evaluations, and this number
is independent of the number of keys
which are combined. Additionally, a
log number of sequential xor operations need to be performed, i.e., loga-
rithmic in the number of keys to be combined. The total number of HMAC
evaluations is between n+m and 2n+m, depending on the number n of
keys to be combined and whether or not they need an extraction step as
well as the number m of keys which are derived. In comparison, the con-
struction in Figure 7 uses 2(n− 1) + 1 sequential HMAC invocations and
2(n − 1) + m HMAC evaluations overall. For the specific cases we chose
to depict, n = 3, m = 7, our construction requires 11 HMAC evaluations,

6 https://github.com/mlswg/mls-protocol/pull/337#discussion r427620764

and the previous construction required 10 HMAC evaluations, increasing
the total number of HMAC evaluations by 1.

Assumption Comparison Our construction requires a unique context value
which the current construction does not require. The current construc-
tion assumes that Extract is a DPRF and, in the case the key material
is not uniform, also assumes that the DPRF works in that case. In turn,
our construction only assumes that HMAC is a PRF, and our extraction
step uses the key material only once, provided that the group context
value does not repeat. To be able to use a standard extraction assump-
tion and to avoid double-extraction, we can fix a uniformly random salt
value at protocol standardization time. We then rely on the fact that the
PSK is generated independently from the salt. If collision-resistance of
the key derivation shall be proved, both constructions equally rely on the
collision-resistance of HMAC.

Outline of the paper We use modular code-writing and state-separating
proofs by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and Kohlweiss
(BDFKK [BDF+]). We provide the relevant background in Section 2. Sec-
tion 3 defines the assumptions on which our constructions rely in a modu-
lar way. Section 4 contains the security notions for (cr)NPRF, (cr)NKDF
and (cr)DHNKDF. Section 5 specifies the corresponding 6 constructions,
and Section 6 provides the security proofs for our constructions.

2 Composed Indistinguishability Games

We use pseudocode to specify security games. We use x ← a to assign
value a to variable x and x←$S to sample x uniformly from set S. Sets
are initialized to the empty set and integers are initialized to 0, unless
otherwise specified. Sets and tables are denoted by capital letters.. We use
bold font to refer to lists or vectors of values, with boldi denoting the i-
th element. Indexing starts at 0. Lowercase monospace refers to functions,
and capitalized Monospace to oracles of games. Sometimes we evaluate a
functions f at every element of a list input and store the result in a new
list result, comparable to the map function in programming. We write
this as result

vec← f(input).
We define the two helper functions pick(skX,pkX, skY,pkY) and

sort(a, b). pick is a helper function for dealing with two pairs of key
pairs, where some secret keys are not set, i.e. bot. In this case, we need
to select the pairs of public and secret keys such that all secret keys are
set (and make a default choice in case both are set). pick proceeds as

follows: It returns an error of the passed lists are not of the same size.
Otherwise, it returns a pair of lists (sk,pk) . sk contains elements of
skX and skY while pk consists of items in pkX and pkY. If there
is an i s.t. skXi = skY = ⊥, pick returns an error. If skXi 6= ⊥,
ski = skX and pki = pkY. Else, ski = skY and pki = pkX. sort
returns (a, b) if a < b, else it returns (b, a). assertcond checks condition
cond and returns an exception when the condition is not true. When a
call causes an exception, then we implicitly assume that the game/package
also returns an exception. The adversary may catch exception.

Package Parameters of Key

bInd: Indistinguishability Bit

buniq: Collision-resistance Bit

Package State

K : table [Index→ Key]

Q : table [Index→ Key]

H : table [Index→ bool]

Set(idx , k , hon)→ ()

if Q [idx],H [idx] = k , hon :

return ()

assert Q[idx] = ⊥
Q [idx]← k;H [idx]← hon

if bInd ∧H [idx] : K [idx]←$ {0, 1}|k|

else : K [idx]← k

if buniq :

assert ¬∃h 6= h ′ : K [h] = K [h ′]

return ()

Get(idx)→ (Key, bool)

assert Q [idx] 6= ⊥
return K [idx],H [idx]

Fig. 10: Key stores keys and
honesty values in a table.
CSET is short for SET(., ., 0).

We capture our assumptions and se-
curity notions as indistinguishability of a
real game and an ideal game, i.e., the real
game describes the real behaviour of a sys-
tem whereas the ideal game describes the
ideal behaviour of a system. As mentioned
before, we slice the pseudocode which de-
scribes our games into several pieces of
stateful code which can call one another
but otherwise cannot access each others
state. We call such a piece of stateful code
a package P, we refer to the set of func-
tions (oracles) that a package P exposes
as the output interface out(P), and to the
set of functions (oracles) that a package
P calls as the input interface in(P). We
refer to a function that is called or pro-
vided by a package as an oracle O. As
previously mentioned, one of the advan-
tages of presenting modular pseudocode
is that we can iteratively construct larger
games. We start by defining games for ba-
sic primitives as compositions of packages,
represented as a graph. Given these, we
can then merge two graphs if they both
contain one or more identical packages as
nodes. These identical packages represent
shared state between two primitives such
as a key.

2.1 Key Packages

As (shared) keys play a central role in our work, we start by defining a
Keybuniq,bInd package which maintains a table K which stores keys and is
indexed by a handle. The handle is a public value which the adversary can
use to refer to the key. I.e., it can instruct a game to perform computations
on the key that corresponds to the handle, e.g., perform a key derivation.

Package Parameters of PKey

G: Cyclic group of order p

g : Generator

Package State

K : table [PublicKey→ SecretKey]

H : table [PublicKey→ bool]

Get(pk)→ (SecretKey, bool)

return (K [pk],H [pk])

Set(sk , hon)→ PublicKey

if hon : sk ←$Zp

pk ← gsk

K [pk]← sk

H [pk]← hon

return pk

Fig. 11: PKey stores secret keys
in a table indexed by public keys.

The SET(h, k, hon) query allows
to store key k under handle h, i.e.,
K[h] ← k. The boolean value hon al-
lows to mark the key as honest (hon =
1) and dishonest (hon = 0). Honesty
is stored in the honesty table H via
H[h] ← hon and is useful to treat
honest and corrupt keys differently in
the game. The GET(h) query allows the
caller to obtain the key k which is
stored under handle h, i.e., k ← K[h],
together with its honesty hon ← H[h].
If not specified otherwise, for simplic-
ity, we assume that keys and out-
put values of cryptographic primitives
have the same length λ, throughout
the paper.

In addition to their function as
key tables, we use Keybuniq,bInd packages
to express security properties. This is
useful when the key values k in the
SET(h, k, hon) query are not available
to the adversary since the SET(h, k, hon) query is made by a part of the
security game such as the key derivation function. Then, we want to state
that the adversary cannot distinguish whether the key derivation func-
tion writes real or uniformly random values into the key package. When
the bit bInd equals 1, then SET(h, k, 1) stores a uniformly random value
instead of a real value. Importantly, this should only happen for honest
keys, namely those that were derived from honest keys unknown to the
adversary.

Finally, we express uniqueness properties such as collision resistance
with the help of a bit buniq. If buniq = 1 then SET(h, k, hon) aborts whenever
there already exists another handle h 6= h′ with the same key k. See
Figure 10 for the code of Keybuniq,bInd . Note that the Q table is used to

ensure that calling the package twice with the same inputs yields the
same output.

We also define a public-key variant PKey which stores secret keys in
a table that is indexed by the corresponding public keys. Similar to the
symmetric-key case, SET(h, sk , 0) allows to store a dishonest value sk . To
model the generation of honest key pairs, SET(h, sk , 1) instructs PKey to
ignore sk , to generate a fresh honest key pair instead and to return the
public-key to the adversary. See Figure 11 for the code of PKey. PKey
is specialized to Diffie-Hellman keys and always generates honest keys
uniformly at random. In our definitions and proofs, we only need this
version of PKey and thus, unlike Key do not index PKey with a bit b.

3 Assumptions

In this section, we state the assumptions that our different key derivation
primitives rely on. We state all assumptions as multi-key assumptions.
Except for the Oracle Diffie-Hellman (ODH) assumption and collision-
resistance (CR), the stated multi-key assumptions reduce to their single-
key counterpart via slight variants of the Multi-Instance Lemma by BD-
FKK. Note that collision-resistance is naturally multi-key, while ODH
could be defined with only a single challenge key pair and a reduction
that loses a square function in the number of honest shares in the system.
We omit this reduction.

Section 3.1 introduces computational extractors. Section 3.3 presents
the Oracle Diffie-Hellman Assumption (ODH). Section 3.4 presents our
assumption for pseudorandomness of a pseudorandom function (PRF).
Section 3.4 presents our assumption of collision-resistance of a PRF. Fi-
nally, Section 3.2 states the combiner properties of XOR. Note that XOR
is an information-theoretically secure combiner for randomness and thus
not a computational assumption.

3.1 Computational Extractor

Let χ be a distribution over source key material which has high min-
entropy. Given a sample k from distribution χ, an extractor xtr takes an
independent, uniformly random, publicly known salt value S and returns
a value y := xtr(S , k). An extractor xtr is a good extractor for a distri-
bution χ if the induced distribution over (y, S) is statistically close to the
distribution over (z, S), where z is a strings of the same length as y, drawn
uniformly at random and independently of S. In other words, xtr(S , k)

looks almost uniformly random from the perspective of an observer who
knows S , but does not know k .

Package Param.

χ: Distribution

Package State

ctr : Counter

Sample()→ (Handle, Leakage)

(k , leak)←$χ

Set(h, k , ctr)

ctr ← ctr + 1

return (ctr , leak)

Fig. 12: Sample pseudocode

For a computational extractor,
introduced by Krawczyk [Kra10], the
distribution χ additionally returns
some leakage leak to the observer,
and the requirement on χ is that k
has high computational min-entropy
given leak . In this case, xtr is a
good computational extractor for χ,
if xtr(S , k) is computationally indis-
tinguishable from a uniformly ran-
dom string of the same length, even
when given leak and S . See Reyzin [Rey11] for a discussion of computa-
tional min-entropy.

We encode the computational security properties of an extractor xtr
for distribution χ as a real-or-ideal security game GXTRb (see Figure 13b).
The Sample package (see Figure 12 for its code) models the high-entropy
distribution and allows the adversary to generate a sample from χ which
is then stored in the upper Key package under handle ctr which is a
counter value maintained by Sample and returned to the adversary.

The XTR oracle of the XTR package allows the adversary to trigger
the computation of xtr(S , k) which is stored in the lower Key package
and can be retrieved by the adversary via a Get query to the lower Key
package. Additionally, the adversary can store its own values in the upper
Key package (This does not change the strength of the security model, but
will be convenient in bigger compositions when one is interested in the
secure interactions between honest and adversarially chosen key values.).
Pseudorandomness is captured by the bit b in the lower Keyb0 package. If
the bit is 0, concrete key values are stored. If the bit is 1, then for honest
handles, uniformly random key value of the same length are stored.

Note that we sample the salt once and for all. However, since the hon-
est samples are still drawn independently from the salt S, the reasoning
about extractor security remains valid also when the same salt is used
throughout.

Definition 1 (Computational Extractor). For a distribution χ, an
extractor xtr and an adversary A we define the extractor advantage as

εGXTR(A) :=
∣∣Pr

[
1 = A → GXTR0

]
− Pr

[
1 = A → GXTR1

]∣∣ .

Package State of XOR

T : table [Context→ Shard]

XOR(ctx , shards)→ ()

if T [ctx] = ⊥ :

T [ctx]← sort(shards)

assert T [ctx] = sort(shards)

k,hon
vec← Get((ctx , shards))

k ′ ←
⊕

k

hon ′ ←
∨

hon

Set(ctx , k ′, hon ′)

Key10
Set

Get Keyb0

XOR
Get

Set
XOR

(a) Game GXORb.

Package Parameters of XTR

xtr: Computational Extractor

l : Length of salt value

Package State

S : salt

Init()→ ({0, 1}l)

assert S = ⊥
S ←$ {0, 1}l

return S

XTR(h)→ ()

assert S 6= ⊥
k , hon ← Get(h)

k ′ ← xtr(S , k)

Set(h, k ′, hon)

XTR

Get Key00

Key00

Get

Set
XTR

CSet
SetSampleSmpl

(b) Game GXTRb.

Package Parameters of DH

G: Cyclic group of order p

g : Generator

xtr: Computational Extractor

l : Length of salt value

Pow

Init
XTR

Get Key10

Key00

Get

Set
XTR

Set
PKey

Get

Set
DH

Package State

S : salt

Init()→ ({0, 1}l)

assert S = ⊥
S ←$ {0, 1}l

return S

Pow(pkX , pkY)→ ()

assert S 6= ⊥
x , xHon ← Get(pkX)

y , yHon ← Get(pkY)

assert x 6= ⊥ ∨ y 6= ⊥
if x 6= ⊥ :

k ← xtr(S , pkY x)

else :

k ← xtr(S , pkXY)

Set(sort(pkX , pkY), k , xHon ∧ yHon)

(c) Game GODHb.

Fig. 13: Games for xor, extractors, and Oracle Diffie-Hellman.

3.2 XOR

Exclusive-OR (XOR) has the statistical property that the XOR of an
arbitrary number of strings is distributed as the uniform distribution as
long as one of the strings was drawn uniformly and independently at
random. The game GXORb encodes this statement (See Figure 13a). The
top Key10 package allows the adversary to trigger the sampling of random
values and to store its own values. The XOR oracle of the XOR package
allows the adversary to indicate a set of handles for keys which the XOR
package retrieves from the upper Key10 package, then computes their
XOR and stores the resulting value in the lower Keyb0 package.

It is important that the XOR package ensures that each input key
is only consumed once, as else, one could run into attacks where a one-
time-pad is used twice. The XOR package ensures this by taking as input
a set of partial handles shard and a context value ctx . For each shards ∈
shards, the XOR package retrieves the key corresponding for the handle
h(ctx , shard), and the value ctx can never be used again, unless it is used
exactly with the same shards (making the call useless). Thereby, the
same value ctx can not be used for two calls to XOR and thus, handles in
different calls have different ctx value and are distinct. See Figure 13a.

Definition 2 (XOR). For an adversary A we define the XOR advantage
as

εGXOR(A) :=
∣∣Pr

[
1 = A → GXOR0

]
− Pr

[
1 = A → GXOR1

]∣∣ .
Note that regardless of the computation time of A, we have εGXOR(A) = 0.

3.3 Oracle Diffie-Hellman (ODH)

The decisional Diffie-Hellman assumption (DDH) captures that given two
honestly generated values X = gx and Y = gy, the Diffie-Hellman secret
gxy is computationally indistinguishable from a uniformly random group
element Z, even when given X and Y [Bon98].

The oracle Diffie-Hellman assumption (ODH) captures that the values
extracted from an honest Diffie-Hellman secret via hashing are pseudo-
random, even if the adversary is given an oracle where it can submit
values Z and see extractions from, e.g., from Zx [ABR01,BFGJ17]. Our
encoding of the ODH assumption uses the extractor package XTR as a
salted extractor. Note that for ODH, it is crucial that the salt is sampled
once and for all, since else the adversary would be able to see extrac-
tions from the same DH secret with different salts, leading to the salted

oracle Diffie-Hellman assumption [BDF+] which is stronger and less well-
understood. One can see DH as a special kind of distribution with leakage
and as making an extractor assumption for this particular distribution.
Note however, that the leakage is interactively computed, based on the
adversary’s inputs, making it a stronger assumption. See Figure 13c for
the code of the ODHb game. As before, security is encoded by the bit b in
the lowest Key package which is b in the real game (stores real keys) and
1 in the ideal key. Note that in the case of DH, we need to compute the
AND of the honesty values of the DH secrets (since knowing one of the
two allows the adversary to derive the secret) whereas in all other games
in this paper, we compute the OR of the honesty values of the keys we
combine.

Definition 3 (ODH). For an adversary A we define the ODHadvantage
as

εGODH(A) :=
∣∣Pr

[
1 = A → GODH0

]
− Pr

[
1 = A → GODH1

]∣∣ .
Package Parameters

f: Coll.-res. prf

ol : Length of output

sl : Length of salt value

Package State

T : table [Cont.→ Handle]

S : {0, 1}l

CRInit()→ ({0, 1}l)

assert S = ⊥
S ←$ {0, 1}sl

return S

CREval(h, ctx1 , ctx2)

assert S 6= ⊥
if T [ctx1] = ⊥ :

T [ctx1]← h

assert T [ctx1] = h

k , hon ← Get(h)

k ′ ← f(k , (ctx1 , ctx2),ol ,S)

Set((ctx1 , ctx2), k ′, hon)

Eval

Keyb0

Key10

Get

Set
PRF

Get

Set

CRInit
CREval

Keybb

Key10

Get

Set
crPRF

Get

Set

Fig. 14: Games GPRFb and GcrPRFb for the pseudorandom functions.

3.4 Pseudorandomness and Collision-Resistance of PRFs

The game GPRFb encodes a multi-key version of the standard pseudo-
randomness assumption for pseudorandom functions. For convenience of

proof, we actually make a slightly weaker assumption where we restrict
the adversary to never use the same input ctx with two different keys.
This allows us to use ctx as a handle for the output value of the PRF
which is a technicality which will be useful later. In particular, it means
that handles do not become very long.

See Figure 14 for the pseudo-code of GPRFb. Analogously to previous
games, the top Key10 package allows the adversary to store dishonest val-
ues and trigger the sampling of honest keys, the PRF package allows the
adversary to trigger prf evaluations on inputs and keys of the adversary’s
choice, and the lower Keyb package allows the adversary to retrieve out-
puts which are concrete if b = 0 and uniformly random if b = 1 and if the
key’s handle is honest.

Definition 4 (PRF). For an adversary A we define the PRFadvantage
as

εGPRF(A) :=
∣∣Pr

[
1 = A → GPRF0

]
− Pr

[
1 = A → GPRF1

]∣∣ .
Pseudorandomness and Collision-resistance The GcrPRFb game encodes
the security of a pseudorandom function which is, additionally, collision-
resistance. E.g., HKDF is designed to be both collision-resistant and a
pseudorandom function, see Krawczyk [Kra10,Kra18]. In Figure 14, the
code lines in bright purple are code lines which are part of GcrPRFb,
but not part of GPRFb. Throughout this paper, bright purple denotes
code relating to collision-resistance. Pseudorandomness is encoded as be-
fore by the first bit of the lower Keybb package. Recall from Section 2.1
that if the bit in the second position is 1, then this means that an error
message is returned when twice the same value is stored. Indistinguisha-
bility between plain storage in Key00 and unique storage in Key11 encodes
collision-resistance, since the adversary can distinguish whenever it can
cause a collision.

Recall that in in GPRFb, we restricted the adversary to use unique
contexts merely for convenience. In turn, for GcrPRFb, restricting the
adversary to unique contexts is crucial, since the adversary can register
the same dishonest key values under two different handles in the upper
Key10 package, and if the adversary were allows to use the same context
with both of them, the adversary would cause a trivial collision (and thus
a trivial win) on the output key.

Salting In concrete security, there always exists an adversary against
the collision-resistance of a function—Rogaway thus duped our standard

collision-resistance notion human ignorance collision-resistance, since it
relies on the collision not being known. Using a salt in the hash-function
makes collision-resistance statements meaningful again, and

Definition 5 (crPRF). For an adversary A the crPRFadvantage is de-
fined as

εGcrPRF(A) :=
∣∣Pr

[
1 = A → GcrPRF0

]
− Pr

[
1 = A → GcrPRF1

]∣∣ .
4 Security Notions

Figure 15 describes our security notions. The security properties provided
by the six primitives are encoded in the lower Key package. Namely, in
the real games of all six games, the bits of the lower Key00 package are 00.
In turn, in the ideal games in Figure 15 (a)-(c), the bits of the lower Key10

package are 10, whereas in the ideal games in Figure 15 (d)-(e), the bits of
the lower Key11 package are 11. Recall from Section 2.1 that Key00 stores
real keys while Key10 and Key11 sample keys at random when the handle
is honest. Thereby, for all six games, the indistinguishability between
the real and the ideal variant of the games encodes pseudorandomness.
In addition, Key11 sends a special abort message to the adversary when
two key values collide. Therefore, for the games in Figure 15 (d)-(e),
the indistinguishability of the real and ideal game additionally encodes
collision-resistance of all derived keys, including dishonest ones. The table
T in all security games ensures that the context values used for derivation
are unique. The variable S in all games stores the salt which is sampled
once and for all.

To summarize, all six primitives combine an arbitrary number of keys
into a pseudorandom key if at least one input key is honest and if they
are called with unique context values. In each column in Figure 15, the
main difference between the top and the bottom game is the second bit
of the lower Key package so that the lower game also encodes collision-
resistance. The difference between each of the columns is how the original
key material is generated from which the final key is derived. We explain
each column in turn.

In the GNPRFb0 and GcrNPRFbb games in Figure 15 (a) and Figure 15
(d), the top Key10 package samples honest keys uniformly at random and
keeps them secret from the adversary. It also allows the adversary to
register its own dishonest keys, possibly even multiple times.

The GNKDF and GcrNKDF games in Figure 15 (b) and Figure 15
(e) allow the same registration capabilities to the adversary for dishonest

Get Keyb0

Set
Key10

Eval
Get

Set
NPRF

(a) Game GNPRF.

Get Keyb0

Key00

Set

GetInit
Derive NKDF

CSet
SetSampleSmpl

(b) Game GNKDF.

Get Keyb0

Set
PKey

Set

GetInit
Derive DHNKDF

(c) Game GDHNKDF.

Get Keybb

Set
Key10

Set

Get
Eval crNPRF

(d) Game GcrNPRF.

Get Keybb

CSet
Key00

Set

GetInit
Derive crNKDF

SetSampleSmpl

(e) Game GcrNKDF.

Get Keybb

Set
PKey

Set

GetInit
Derive crDHNKDF

(f) Game GcrDHNKDF.

Package Parameters

f: cr-NPRF

sl : Salt length

ol : Output key length

Init()

assert S = ⊥
S ←$ {0, 1}sl

return S

Eval(h, ctx1 , ctx2)

if T [ctx1] = h :

return

assert T [ctx1] = ⊥
T [ctx1]← h

assert S 6= ⊥

k,hon
vec← Get(h)

k ′ ← f(k, ctx1 , ctx2 , S)

hon ′ ←
∨

hon

Set((ctx1 , ctx2), k ′, hon ′)

(g) NPRF package code.

Package Parameters

f: cr-NKDF

l : Salt length

Init()

assert SExt = ⊥
SExt ←$ {0, 1}l

Scr ←$ {0, 1}l

return SExt ,Scr

Derive(h, ctx1 , ctx2)

if T [ctx] = h :

return

assert T [ctx] = ⊥
T [ctx]← h

assert SExt 6= ⊥,Scr 6= ⊥

k,hon
vec← Get(h)

k ′ ← f(k, ctx1 ,SExt , ctx2 , Scr)

hon ′ ←
∨

hon

Set((ctx1 , ctx2), k ′, hon ′)

(h) NKDF package code.

Package Parameters

f: cr-DHNKDF

l : Salt length

Init()

assert SExt = ⊥
SExt ←$ {0, 1}l

Scr ←$ {0, 1}l

return SExt ,Scr

Pow(pkX,pkY, ctx1 , ctx2)

if T [ctx1] = (pkX,pkY) :

return

assert T [ctx1] = ⊥
T [ctx1]← (pkX,pkY)

assert SExt 6= ⊥,Scr 6= ⊥

skX,honX
vec← Get(pkX)

skY,honY
vec← Get(pkY)

hon
vec← honX ∧ honY

sk,pk← pick(skX,pkX,

skY,pkY)

k ′ ← f(sk,pk, ctx1 ,SExt , ctx2 , Scr)

hon ′ ←
∨

hon

Set((ctx1 , ctx2), k ′, hon ′)

(i) DHNKDF package code.

Fig. 15: Security Notions. Observe that (c) and (f) use a PKey package.
(d)-(f) use the same idealization bit in the lower Key package for pseudo-
randomness and uniqueness.

keys. The honest input key material is sampled in package Sample from
a high-entropy distribution and then stored in the Key00 package.

Finally, in the the GDHNKDF and GcrDHNKDF games in Figure 15
(c) and Figure 15 (f), the adversary may register dishonest Diffie-Hellman
secrets in Pkey and trigger the sampling of honest Diffie-Hellman shares
in Pkey.

5 Constructions

We have three constructions, each of which relies on different key mate-
rial: The NPRF relies on the honest keys being uniformly random, the
NKDF relies on key material with high computational min-entropy, and
the DHNKDF relies on key material which stems from DH keys. We turn
to each of these constructions shortly. Before, we want to discuss how to
turn a version of the construction which does not provide unique keys
into a variant which does provide unique keys. Namely, it suffices to take
the output of a NPRF, NKDF or DHNKDF and run it through a crPRF,
with unique context: The pseudorandomness will be preserved, and addi-
tionally, the output will become unique. As we will see later, we have an
analogy between the construction and the reduction proof. As a feature
of our design, the original proof for each of the three primitives can be
augmented by a single additional proof step to add the collision-resistance
property. Since the plain and the collision-resistance primitive are so sim-
ilar, we will treat them both at the same time, adding a bright purple
cr to highlight the part that is only relevant for the collision-resistant
version of the statement.

fcrNPRF(k, ctx1 , ctx2 ,Scr)

for i ∈ {0, ..., |k| − 1} :

ki ← fPRF(ki, (ctx1 , i))

k ′ ←
⊕

k

k ′ ← fcrPRF(k
′,Scr , (ctx1 , ctx2))

return k ′

fcrNKDF(k, ctx1 ,SExt , ctx2 ,Scr)

k
vec← xtr(SExt ,k)

for i ∈ {0, ..., |k| − 1} :

ki ← fPRF(ki, (ctx1 , i))

k ′ ←
⊕

k

k ′ ← fcrPRF(k
′,Scr , (ctx1 , ctx2))

return k ′

fcrDHNKDF(pk, sk, ctx1 ,SExt , ctx2 ,Scr)

assert |pk| = |sk|

k
vec← pksk

k
vec← xtr(SExt ,k)

for i ∈ {0, ..., |pk| − 1} :

ki ← fPRF(ki, (ctx1 , i))

k ′ ←
⊕

k

k ′ ← fcrPRF(k
′,Scr , (ctx1 , ctx2))

return k ′

Fig. 16: Pseudocode of the constructions fcrNPRF, fcrNKDF and fcrDHNKDF.

5.1 NPRF and crNPRF

Figure 16 provides the code of our crNPRF construction fcrNPRF . It takes
a list of keys k and a context values ctx and a salt Scr as input. Then,
for the i-th entry in k, denoted, ki, fcrNPRF evaluates a pseudorandom
function fPRF , keyed with ki, on the input (ctx , i) to obtain an output
which then overwrites the ki in the state of the function evaluation. After
performing this operation for all entries i, the resulting ki values are then
xored into k′, then a collision-resistant PRF fcrPRF is evaluated on k′, Scr

and ctx and the result is assigned back to k′ and then k′ is returned.

Theorem 1 (NPRF). For all adversaries A, it holds that

εNPRF(A)

= εCORE-NPRF(A → MOD-NPRF) (1)

≤ εPRF(A → MOD-NPRF → R1
NPRF)

+ εPRF(A → MOD-NPRF → R3
NPRF) (2)

where the reductions R1
NPRF and R3

NPRF are specified in Figures 20b and
20d, respectively.

Theorem 2 (crNPRF). For all adversaries A, it holds that

εcrNPRF(A)

= εCORE-crNPRF(A → MOD-crNPRF) (3)

≤ εCORE-NPRF(A → MOD-crNPRF → R1
crNPRF)

+ εcrPRF(A → MOD-crNPRF → R2
crNPRF)

+ εCORE-NPRF(A → MOD-crNPRF → R3
crNPRF) (4)

where the reductions R1
NPRF, R3

NPRF, R1
crNPRF, R2

crNPRF and R3
crNPRF

are specified in Figures 20b, 20d, 21b, 21c and 21d, respectively.

5.2 NKDF and crNKDF

Figure 16 provides the code of our crNKDF construction fcrNKDF . It is
analogous to the crNPRF construction, except that it extracts the initial
key material from a high-entropy source rather than assuming that it is
sampled uniformly at random.

Theorem 3 (NKDF). For all adversaries A, it holds that

εNKDF(A)

= εCORE-NKDF(A → MOD-NKDF) (5)

≤ εXTR(A → MOD-NKDF → R1
NKDF)

+ εNPRF(A → MOD-NKDF → R2
NKDF)

+ εXTR(A → MOD-NKDF → R3
NKDF) (6)

and reductions R1
NKDF and R3

NKDF are specified in Figures 20f and 20h,
respectively.

Theorem 4 (crNKDF). For all adversaries A, it holds that

εcrNKDF(A)

= εCORE-crNKDF(A → MOD-crNKDF) (7)

≤ εCORE-NKDF(A → MOD-crNKDF → R1
crNKDF)

+ εcrPRF(A → MOD-crNKDF → R2
crNKDF)

+ εCORE-NKDF(A → MOD-crNKDF → R3
crNKDF) (8)

where the reductions R1
NKDF, R3

NKDF, R1
crNKDF, R2

crNKDF and R3
crNKDF

are specified in Figures 20f, 20h, 21f, 21g and 21h, respectively.

5.3 DHNKDF and crDHNKDF

Figure 16 provides the code of our crDHNKDF construction fcrDHNKDF .
Again, the difference to the crNPRF construction resides in the initial
key material. In the crDHNKDF construction, the initial key material is
extracted from a Diffie-Hellman secret.

Theorem 5 (DHNKDF). For all adversaries A, it holds that

εDHNKDF(A)

= εCORE-DHNKDF(A → MOD-DHNKDF) (9)

≤ εODH(A → MOD-DHNKDF → R1
DHNKDF)

+ εNPRF(A → MOD-DHNKDF → R2
DHNKDF)

+ εODH(A → MOD-DHNKDF → R3
DHNKDF) (10)

where the reductions R1
DHNKDF and R3

DHNKDF are specified in Figures 20j
and 20l, respectively.

Theorem 6 (crDHNKDF). For all adversaries A, it holds that

εcrDHNKDF(A)

= εCORE-crDHNKDF(A → MOD-crDHNKDF) (11)

≤ εCORE-DHNKDF(A → MOD-crDHNKDF → R1
crDHNKDF)

+ εcrPRF(A → MOD-crDHNKDF → R2
crDHNKDF)

+ εCORE-DHNKDF(A → MOD-crDHNKDF → R3
crDHNKDF) (12)

where the reductions R1
DHNKDF, R3

DHNKDF, R1
crDHNKDF, R2

crDHNKDF and
R3

crDHNKDF are specified in Figures 20j, 20l, 21j, 21k and 21l, respectively.

6 Proofs

We now prove Theorem 1-5. Section 6.1 describes the modularization of
the high-level security notions into modular games. The proofs proceed
via inlining and Bellare-Rogaway style code-based game-playing [BR06].
While such proofs might be tedious, we deem them crucial for the case
of constructing primitives based on uniqueness criteria, since we would
catch missing preconditions in such a proof.

Once modularized, in Section 6.2, we can proceed via visual, graph-
based reduction arguments which will be striking in their simplicity and
clarity. I.e., the modularization in Section 6.1 is the hard part, and the
remaining part of the proof then becomes easy.

To shorten the proofs additionally, our modular design allows us to
re-use parts of previous proofs. e.g., for each of the collision-resistant prim-
itives, we will re-use lemmas for their non-collision-resistant counterpart.
Towards this goal, it is useful to define the following advantages:

εCORE-NPRF(A) := |Pr
[
1 = A → CORE-NPRF0

]
− Pr

[
1 = A → CORE-NPRF3

]
|

εCORE-crNPRF(A) := |Pr
[
1 = A → CORE-crNPRF0

]
− Pr

[
1 = A → CORE-crNPRF3

]
|

εCORE-NKDF(A) := |Pr
[
1 = A → CORE-NKDF0

]
− Pr

[
1 = A → CORE-NKDF3

]
|

εCORE-crNKDF(A) := |Pr
[
1 = A → CORE-crNKDF0

]
− Pr

[
1 = A → CORE-crNKDF3

]
|

εCORE-DHNKDF(A) := |Pr
[
1 = A → CORE-DHNKDF0

]
− Pr

[
1 = A → CORE-DHNKDF3

]
|

εCORE-crDHNKDF(A) := |Pr
[
1 = A → CORE-crDHNKDF0

]
− Pr

[
1 = A → CORE-crDHNKDF3

]
|,

where the respective games are defined in Figure 20 and Figure 21.

6.1 Modularization proofs via Inlining

We first decompose all six monolithic games into functionally equiva-
lent modular games. Since the monolithic games and the modular games
have the same input-output behaviour, an adversary’s advantage does not
change. We obtain the following six claims, structured into 3 claims, each
of which states the decomposition soundness for the collision-resistant
and the non-collision-resistant variant of the respective primitive. The
respective modularizations are depicted in Figure 17 and Figure 18.

Package State

T : table

Init()

return CRInit()

CREval(h, ctx1 , ctx2)

if T [ctx1] = ⊥ :

T [ctx1]← h

assert T [ctx1] = h

for i ∈ {0, ..., |h| − 1} :

Eval(hi , (ctx1 , i))

XOR(ctx1 , (0, ..., |h| − 1))

CREval(ctx1, ctx1, ctx2)

(a) Code of MOD-crNPRF

Package State

T : table

Init()

return Init(), CRInit()

CRDerive(h, ctx1 , ctx2)

if T [ctx1] = ⊥ :

T [ctx1]← h

assert T [ctx1] = h

for i ∈ {0, ..., |h| − 1} :

XTR(hi)

Eval(hi , (ctx1 , i))

XOR(ctx1 , (0, ..., |h| − 1))

CREval(ctx1 , ctx1 , ctx2)

(b) Code of MOD-crNKDF

Package State

T : table

Init()

return Init(), CRInit()

CRDerive(pkX,pkY, ctx1 , ctx2)

assert |pkX| = |pkY|

(pkX,pkY)
vec← sort(pkX,pkY)

if T [ctx1] = ⊥ :

T [ctx1]← (pkX,pkY)

assert T [ctx1] = (pkX,pkY)

for i ∈ {0, ..., |pkX| − 1} :

Pow(pkXi,pkYi)

XTR((pkXi,pkYi))

Eval((pkXi,pkYi), (ctx1 , i))

XOR(ctx1 , (0, ..., |h| − 1))

CREval(ctx1, ctx1, ctx2)

(c) Code of MOD-crDHNKDF

Fig. 17: Pseudocode of Modular Constructions in Figure 16.

Eval
Key00

Set
Key10

Get

Set
PRF

Get Keyb0
XOR

Get

Set
XOR

Eval

M
O
D
-N
PR

F

(a) NPRF Construction.

Init
XTR

Eval
Key00

Key00

Get

Set
PRF

Get Keyb0
XOR

Get

Set
XOR

Init
Derive

M
O
D
-N
KD

F

Key00

Get

Set
XTR

CSet
SetSampleSmpl

(b) NKDF Construction.

Pow

Init
XTR

Eval
Key00

Key00

Get

Set
PRF

Get Keyb0
XOR

Get

Set
XOR

Init
Derive

M
O
D
-D
H
N
KD

F

Key00

Get

Set
XTR

Set
PKey

Get

Set
DH

(c) DHNKDF Construction.

CRInit
CREval

Eval
Key00

Set
Key10

Get

Set
PRF

Key00
XOR

Get

Set
XOR

Eval

M
O
D
-c
rN
PR

F

Get Keybb

Set

Get
crPRF

(d) crNPRF Construction.

CRInit
CREval

Init
XTR

Eval
Key00

Key00

Get

Set
PRF

Key00
XOR

Get

Set
XOR

Init
Derive

M
O
D
-c
rN
KD

F

Key00

Get

Set
XTR

Get Keybb

Set

Get
crPRF

CSet
SetSampleSmpl

(e) crNKDF Construction.

CRInit
CREval

Init
XTR

Eval
Key00

Key00

Get

Set
PRF

Key00
XOR

Get

Set
XOR

Init
Derive

Key00

Get

Set
XTR

Get Keybb

Set

Get
crPRF

Pow

Set
PKey

Get

Set
DH

M
O
D
-c
rN
KD

F

(f) crDHNKDF Constr.

Fig. 18: Modular Constructions for the primitives in Figure 15.

Claim 1 (GcrNPRF Decomposition) It holds that

GNPRF0
code
= MOD-NPRF → COREGNPRF

0

GNPRF1
code
= MOD-NPRF → COREGNPRF

3

GcrNPRF0
code
= MOD-crNPRF → COREGcrNPRF

0

GcrNPRF1
code
= MOD-crNPRF → COREGcrNPRF

3

where
code
= denotes that the code of the two packages on the left and right

of the equivalence have the same input-output behavior. MOD-NPRF and
MOD-crNPRF are defined in Figure 17a, COREGNPRF

0 is defined in Fig-
ure 20a, COREGNPRF

3 is defined in Figure 20d, COREcrGNPRF
0 is defined

in Figure 21a, and COREcrGNPRF
3 is defined in Figure 21d.

Before turning to the proof of Claim 1, we observe that Claim 1 directly
implies Equality 1 and Equality 3 in Theorem 1, because if two pairs of
games have the same input-output behavior, then the adversary’s advan-
tage in both games is identical.

Proof. The proof of Claim 1 proceeds via inlining COREGcrNPRF
0 into

MOD-crNKDF and comparing with GcrNPRF0 and, analogously, inlining
COREGcrNPRF

3 into MOD-crNKDF and comparing with GcrNPRF1. Since
COREGcrNPRF

0 and COREGcrNPRF
3 only differ w.r.t. their last bit in the

lowest Keyb0 package, we can simply choose to inline all packages except
for that last one and obtain the same code. Moreover, also GcrNPRF0

and GcrNPRF1 only differ w.r.t. the lowest Keyb0 package and thus, in the
inlining, we can focus on the main packages.

Consider Figure 19. In the left-most column, there is the code of
CREval of MOD-crNKDF. In the second column, we inline the EVAL (de-
fined in package PRF), XOR (defined in package XOR) and CREval (defined
in package CRPRF) oracles. Compare with their descriptions in Figure 13
and Figure 14. From the second to third column, we remove redundant
checks—these checks are redundant since the first three lines of the oracle
code ensure that each value ctx is only used once. Once the checks are
removed, the assignments to the table can be removed, too. From the
third to fourth column, we pull the Get call in front of the for-loop and
use vector assignment notation instead. From the fourth to fifth column,
instead of writing a value into a Key00 package and reading it again, we
simply assign the value directly to the respective variable. Occasionally,

we refer to this tool as a Set-then-Get rule. This step is valid whenever
the handle in the call to the Key00 package is only used once. This is the
case here as the first three lines of the oracle code ensure that each value
ctx is only used once. Additionally, from the fourth to fifth column, we
move certain computations up or down in the code which is a valid step
as the variables are neither read nor written to in the meanwhile. We then
obtain the code of fcrNPRF and thus recovered the code of COREGcrNPRF

0

in column 6. ut

Claim 2 (GcrNKDF Decomposition) It holds that

GNKDF0
code
= MOD-NKDF → COREGNKDF

0

GNKDF1
code
= MOD-NKDF → COREGNKDF

3

GcrNKDF0
code
= MOD-crNKDF → COREGcrNKDF

0

GcrNKDF1
code
= MOD-crNKDF → COREGcrNKDF

3

where MOD-NKDF and the packages MOD-crNKDF are defined in Fig-
ure 17b, COREGNKDF

0 is defined in Figure 20e, COREGNKDF
3 is defined

in Figure 20h, COREcrGNKDF
0 is defined in Figure 21e, and COREcrGNKDF

3

is defined in Figure 21h.

Claim 2 directly implies Equality 5 and Equality 7 in Theorem 3.

Proof. Analogously to the proof of Claim 1, the proof proceeds by in-
lining, see Figure 22 for the step-by-step inlining and the accompanying
explanations. As before, the proof starts with a straightforward inlining of
the oracles Eval, XOR, CREval defined by the packages PRF, XOR, CRPRF
in Figure 13 and Figure 14. Then, redundant checks and assignments are
removed based on the ctx check in the beginning of the oracle call. Then,
vector notation is applied, code lines are moved up and down respectively,
and the dropping of Set-then-Get is applied until we obtain the code of
fcrNKDF, as desired. ut

Claim 3 (GcrDHNKDF Decomposition) It holds that

GDHNKDF0
code
= MOD-DHNKDF → COREGDHNKDF

0

GDHNKDF1
code
= MOD-DHNKDF → COREGDHNKDF

3

GcrDHNKDF0
code
= MOD-crDHNKDF → COREGcrDHNKDF

0

GcrDHNKDF1
code
= MOD-crDHNKDF → COREGcrDHNKDF

3

where MOD-DHNKDF is defined in Figure 17c, COREGDHNKDF
0 and the

packages MOD-crDHNKDF are defined in Figure 20i, COREGDHNKDF
3 is

defined in Figure 20l, COREcrGDHNKDF
0 is defined in Figure 21i, and

COREcrGDHNKDF
3 is defined in Figure 21l.

Claim 3 directly implies Equality 9 and Equality 11 in Theorem 5.

Proof. The proof proceeds via inlining, see Figure 23 and is analogous to
the previous two claims. One difference is the computation of the honesty
function which is slightly more complex than in the previous two cases,
since we first compute an and over the honesty of the DH shares and then
an or over the results of that computation. ut

6.2 Modular Core Proofs

We now proceed to the modular proofs of the adversary’s advantages
against the core games. We prove each of the six core lemmas individually.

Lemma 1 (COREGNPRF). For all adversaries B

εCORE-NPRF(B)

≤εPRF(B → R1
NPRF) + εXOR(B → R2

NPRF) + εPRF(B → R3
NPRF)

=εPRF(B → R1
NPRF) + 0 + εPRF(B → R3

NPRF),

where R1
NPRF is defined in Figure 20b, R2

XOR is defined in Figure 20c,
and R3

NPRF is defined in Figure 20d.

Lemma 1 directly implies Inequality 1 in Theorem 1, by choosing B =
A → MOD-NPRF.

Proof. Recall that

εCORE-NPRF(B)
def
=

∣∣Pr
[
1 = B → CORE0

NPRF

]
− Pr

[
1 = B → CORE3

NPRF

]∣∣ .

I
n
i
t
()
→

({
0
,1
}l

)

re
tu

rn
C
R
I
n
i
t
()

(r
ep
la
ce
d
by

co
d
e)

a
ss
e
rt

S
=
⊥

S
←

$
{0
,1
}s

l

re
tu

rn
S

C
R
E
v
a
l
(h
,c
tx
1
,c
tx
2

)
→

()

if
T

[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:

T
[c
tx
1

]
←

h
T

[c
tx
1

]
←

h
T

[c
tx
1

]
←

h
T

[c
tx
1

]
←

h
T

[c
tx
1

]
←

h
T

[c
tx
1

]
←

h

a
ss
e
rt

T
[c
tx
1

]
=

h
a
ss
e
rt

T
[c
tx
1

]
=

h
a
ss
e
rt

T
[c
tx
1

]
=

h
a
ss
e
rt

T
[c
tx
1

]
=

h
a
ss
e
rt

T
[c
tx
1

]
=

h
a
ss
e
rt

T
[c
tx
1

]
=

h

a
ss
e
rt

S
6=
⊥

a
ss
e
rt

S
6=
⊥

k
,h

o
n

v
e
c
←

G
e
t
(h

)
k
,h

o
n

v
e
c
←

G
e
t
(h

)
k
,h

o
n

v
e
c
←

G
e
t
(h

)

k
′
←

f
c
r
N
P
R
F
(k
,c
tx
1
,o
l,
S

)

fo
r
i
∈
{0
,.
..
,|
h
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
h
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
h
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
h
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
h
|−

1
}

:
(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
P
R
F
)

E
v
a
l
(h

i
,(
ct
x1
,i

))
(r
ep
la
ce
d
by

co
d
e)

if
T

P
R
F

[(
ct
x1
,i

)]
=
⊥

:
(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

T
P
R
F

[(
ct
x1
,i

)]
←

h
i

(r
ed
u
n
d
a
n
t
a
ss
ig
n
m
en

t,
re
m
o
ve
d
)

a
ss
e
rt

T
P
R
F

[(
ct
x1
,i

)]
=

h
i

(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

k
,h
o
n
←

G
e
t
(h

i
)

k
,h
o
n
←

G
e
t
(h

i
)

(u
si
n
g
ve
ct
o
r
a
ss
ig
n
m
en

t
n
o
ta
ti
o
n
)

k
′
←

f
P
R
F
(k
,(
ct
x1
,i

),
o
l)

k
′
←

f
P
R
F
(k
,(
ct
x1
,i

),
o
l)

k
′
←

f
P
R
F
(k

i
,(
ct
x1
,i

),
o
l)

k
i
←

f
P
R
F
(k

i
,(
ct
x1
,i

),
o
l)

(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
P
R
F
)

S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n
i
)

(d
ro
p
S
et
-t
h
en

-G
et
)

X
O
R
(c
tx
1
,(

0
,.
..
,|
h
|−

1
))

(r
ep
la
ce
d
by

co
d
e)

if
T

X
O
R

[c
tx
1

]
=
⊥

:
(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

T
X
O
R

[c
tx
1

]
←

s
o
r
t
((

0
,.
..
,|
h
|−

1
))

(r
ed
u
n
d
a
n
t
a
ss
ig
n
m
en

t,
re
m
o
ve
d
)

a
ss
e
rt

T
X
O
R

[c
tx
1

]
=

s
o
r
t
((

0
,.
..
,|
h
|−

1
))

(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
(d
ro
p
S
et
-t
h
en

-G
et
)

k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
P
R
F
)

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

(m
o
ve
d
d
o
w
n
)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

(d
ro
p
S
et
-t
h
en

-G
et
)

C
R
E
v
a
l
(c
tx

1
,c
tx

1
,c
tx

2
)

(r
ep
la
ce
d
by

co
d
e)

a
ss
e
rt

S
6=
⊥

a
ss
e
rt

S
6=
⊥

a
ss
e
rt

S
6=
⊥

(m
o
ve
d
u
p
)

if
T

c
r
[c
tx
1

]
=
⊥

:
(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

T
c
r
[c
tx
1

]
←

ct
x1

(r
ed
u
n
d
a
n
t
a
ss
ig
n
m
en

t,
re
m
o
ve
d
)

a
ss
e
rt

T
c
r
[c
tx
1

]
=

ct
x1

(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
(d
ro
p
S
et
-t
h
en

-G
et
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S

)
k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S

)
k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S

)
k
′
←

f
c
r
P
R
F
(k

′ ,
ct
x1
,S

)
(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
P
R
F
)

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)

F
ig

.1
9:

In
li

n
in

g
N

P
R

F

We can thus prove Lemma 1 by bounding the difference between these
two games, i.e., starting with Pr

[
1 = B → CORE0

NPRF

]
and then pro-

ceeding via several ε-transformations to Pr
[
1 = B → CORE0

NPRF

]
. In the

following transformations, equalities follow from graph equality by visual
inspection, and inequalities follow from the positivity of absolute value.

Pr
[
1 = B → CORE0

NPRF

]
Fig. 20b

= Pr
[
1 = B → R1

NPRF → GPRF0
]

−Pr
[
1 = B → R1

NPRF → GPRF1
]

+ Pr
[
1 = B → CORE1

NPRF

]
Fig. 20c

= Pr
[
1 = B → R2

NPRF → GXOR0
]

−Pr
[
1 = B → R2

NPRF → GXOR1
]

+ Pr
[
1 = B → CORE2

NPRF

]
+ εPRF(B → R1

NPRF)

Fig. 20d
= Pr

[
1 = B → R3

NPRF → GPRF0
]

−Pr
[
1 = B → R3

NPRF → GPRF1
]

+ Pr
[
1 = B → CORE3

NPRF

]
+ εPRF(B → R1

NPRF) + 0

= Pr
[
1 = B → CORE3

NPRF

]
+ εPRF(B → R1

NPRF)

+εPRF(B → R3
NPRF)

Lemma 2 (COREGcrNPRF). For all adversaries B

εCORE-crNPRF(B)

≤εCORE-NPRF(B → R1
crNPRF)

+ εcrPRF(B → R2
crNPRF)

+ εCORE-NPRF(B → R3
crNPRF)

where R1
crNPRF is defined in Figure 21b, R2

crNPRF is defined in Figure 21c,
and R3

crNPRF is defined in Figure 21d.

Lemma 2 directly implies Inequality 4 in Theorem 2, by choosing B =
A → MOD-crNPRF.

Proof. Recall that

εCORE-crNPRF(B)
def
=

∣∣Pr
[
1 = B → CORE0

crNPRF

]
− Pr

[
1 = B → CORE3

crNPRF

]∣∣ .

Analogously to the proof of Lemma 1, we start with the probability
Pr

[
1 = B → CORE0

crNPRF

]
and then proceed via several ε-transformations

to Pr
[
1 = B → CORE0

crNPRF

]
.

Pr
[
1 = B → CORE0

crNPRF

]
Fig. 21b

= Pr
[
1 = B → R1

crNPRF → CORE0
crNPRF

]
−Pr

[
1 = B → R1

crNPRF → CORE1
crNPRF

]
+ Pr

[
1 = B → CORE1

crNPRF

]
Fig. 21c
≤ Pr

[
1 = B → R2

crNPRF → GcrPRF0
]

−Pr
[
1 = B → R2

crNPRF → GcrPRF1
]

+ Pr
[
1 = B → CORE2

crNPRF

]
+ εCORE-crNPRF(B → R1

crNPRF)

Fig. 21d
≤ Pr

[
1 = B → R3

crNPRF → GPRF0
]

−Pr
[
1 = B → R3

crNPRF → GPRF1
]

+ Pr
[
1 = B → CORE3

crNPRF

]
+ εCORE-NPRF(B → R1

crNPRF)

+εcrPRF(B → R2
crNPRF)

≤ Pr
[
1 = B → CORE3

crNPRF

]
+ εCORE-NPRF(B → R1

crNPRF)

+εcrPRF(B → R2
crNPRF) + εCORE-NPRF(B → R3

crNPRF)

Lemma 3 (COREGNKDF). For all adversaries B

εCORE-NKDF(B)

≤εXTR(B → R1
NKDF)

+ εCORE-NKDF(B → R2
NKDF)

+ εXTR(B → R3
NKDF)

where R1
NKDF is defined in Figure 20f, R2

NKDF is defined in Figure 20g,
and R3

NKDF is defined in Figure 20h.

Proof. Based on Figures 20e-20h, the proof is analogous to the proof of
Lemma 1.

Lemma 4 (COREGcrNKDF). For all adversaries B

εCORE-crNKDF(B)

≤εCORE-NKDF(B → R1
crNKDF)

+ εcrPRF(B → R2
crNKDF)

+ εCORE-NKDF(B → R3
crNKDF)

where R1
crNKDF is defined in Figure 21f, R2

crNKDF is defined in Figure 21g,
and R3

crNKDF is defined in Figure 21h.

Proof. Based on Figure 21e-21h, the proof is analogous to the proof of
Lemma 2.

Lemma 5 (COREGDHNKDF). For all adversaries B

εCORE-DHNKDF(B)

≤εODH(B → R1
DHNKDF)

+ εCORE-NKDF(B → R2
DHNKDF)

+ εODH(B → R3
DHNKDF)

where R1
DHNKDF is defined in Figure 20j, R2

DHNKDF is defined in Fig-
ure 20k, and R3

DHNKDF is defined in Figure 20l.

Proof. Based on Figure 20i-20l, the proof is analogous to the proof of
Lemma 1.

Lemma 6 (COREGcrDHNKDF). For all adversaries B

εCORE-crDHNKDF(B)

≤εCORE-DHNKDF(B → R1
crDHNKDF)

+ εcrPRF(B → R2
crDHNKDF)

+ εCORE-DHNKDF(B → R3
crDHNKDF)

where R1
crDHNKDF is defined in Figure 21j, R2

crDHNKDF is defined in Fig-
ure 21k, and R3

crDHNKDF is defined in Figure 21l.

Proof. Based on Figure 21i-21l, the proof is analogous to the proof of
Lemma 2.

Eval

Key00

Set
Key10

Get

Set
PRF

Get Key00

XOR
Get

Set
XOR

(a) CORE0
NPRF , R0

NPRF

Eval

Key10

Set
Key10

Get

Set
PRF

Get Key00

XOR
Get

Set
XOR

(b) CORE1
NPRF , R1

NPRF

Eval

Key10

Set
Key10

Get

Set
PRF

Get Key10

XOR
Get

Set
XOR

(c) CORE2
NPRF , R2

NPRF

Eval

Key00

Set
Key10

Get

Set
PRF

Get Key10

XOR
Get

Set
XOR

(d) CORE3
NPRF , R3

NPRF

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Get Key00

XOR

Get

Set
XOR

Key00

Get

Set

XTR

CSet
SetSampleSmpl

(e) CORE0
NKDF , R0

NKDF

Init
XTR

Eval

Key00

Key10

Get

Set
PRF

Get Key00

XOR

Get

Set
XOR

Key00

Get

Set

XTR

CSet
SetSampleSmpl

(f) CORE1
NKDF , R1

NKDF

Init
XTR

Eval

Key00

Key10

Get

Set
PRF

Get Key10

XOR

Get

Set
XOR

Key00

Get

Set

XTR

CSet
SetSampleSmpl

(g) CORE2
NKDF , R2

NKDF

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Get Key10

XOR

Get

Set
XOR

Key00

Get

Set

XTR

CSet
SetSampleSmpl

(h) CORE3
NKDF , R3

NKDF

Pow

Init
XTR

Eval

Key00

Key00
Get

Set
PRF

Get Key00

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Set
PKey

Get

Set
DH

(i) CORE0
DHNKDF , R0

DHNKDF

Pow

Init
XTR

Eval

Key00

Key10

Get

Set
PRF

Get Key00

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Set
PKey

Get

Set
DH

(j) CORE1
DHNKDF , R1

DHNKDF

Pow

Init
XTR

Eval

Key00

Key10
Get

Set
PRF

Get Key10

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Set
PKey

Get

Set
DH

(k) CORE2
DHNKDF , R2

DHNKDF

Pow

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Get Key10

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Set
PKey

Get

Set
DH

(l) CORE3
DHNKDF , R3

DHNKDF

Fig. 20: Proof steps for the modular constructions in Figure 18.

CRInit
CREval

Eval

Key00

Set
Key10

Get

Set
PRF

Key00

XOR
Get

Set
XOR

Get Key00

Set

Get
crPRF

(a) CORE0
crNPRF , R0

crNPRF

CRInit
CREval

Eval

Key00

Set
Key10

Get

Set
PRF

Key10

XOR
Get

Set
XOR

Get Key00

Set

Get
crPRF

(b) CORE1
crNPRF , R1

crNPRF

CRInit
CREval

Eval

Key00

Set
Key10

Get

Set
PRF

Key10

XOR
Get

Set
XOR

Get Key11

Set

Get
crPRF

(c) CORE2
crNPRF , R2

crNPRF

CRInit
CREval

Eval

Key00

Set
Key10

Get

Set
PRF

Key00

XOR
Get

Set
XOR

Get Key11

Set

Get
crPRF

(d) CORE3
crNPRF , R3

crNPRF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key00

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key00

Set

Get
crPRF

CSet
SetSampleSmpl

(e) CORE0
crNKDF , R0

crNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key10

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key00

Set

Get
crPRF

CSet
SetSampleSmpl

(f) CORE1
crNKDF , R1

crNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key10

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key11

Set

Get
crPRF

CSet
SetSampleSmpl

(g) CORE2
crNKDF , R2

crNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key00

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key11

Set

Get
crPRF

CSet
SetSampleSmpl

(h) CORE3
crNKDF , R3

crNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key00

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key00

Set

Get
crPRF

Pow

Set
PKey

Get

Set
DH

(i) CORE0
crDHNKDF , R0

crDHNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key10

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key00

Set

Get
crPRF

Pow

Set
PKey

Get

Set
DH

(j) CORE1
crDHNKDF , R1

crDHNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key10

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key11

Set

Get
crPRF

Pow

Set
PKey

Get

Set
DH

(k) CORE2
crDHNKDF , R2

crDHNKDF

CRInit
CREval

Init
XTR

Eval

Key00

Key00

Get

Set
PRF

Key00

XOR
Get

Set
XOR

Key00

Get

Set
XTR

Get Key11

Set

Get
crPRF

Pow

Set
PKey

Get

Set
DH

(l) CORE3
crDHNKDF , R3

crDHNKDF

Fig. 21: Proof steps for the modular constructions in Figure 18.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-
Hellman assumptions and an analysis of DHIES. In David Naccache, editor,
CT-RSA 2001, volume 2020 of LNCS, pages 143–158. Springer, Heidelberg,
April 2001.

[BDF+] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok,
and Markulf Kohlweiss. Handshake security for the TLS 1.3 standard. In
progress.

[BDF+18] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Ko-
hbrok, and Markulf Kohlweiss. State separation for code-based game-
playing proofs. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part III, volume 11274 of LNCS, pages 222–249. Springer,
Heidelberg, December 2018.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof
Pietrzak, François-Xavier Standaert, and Yu Yu. Leftover hash lemma,
revisited. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 1–20. Springer, Heidelberg, August 2011.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson.
PRF-ODH: Relations, instantiations, and impossibility results. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403
of LNCS, pages 651–681. Springer, Heidelberg, August 2017.

[BL15] Mihir Bellare and Anna Lysyanskaya. Symmetric and dual PRFs
from standard assumptions: A generic validation of an HMAC as-
sumption. Cryptology ePrint Archive, Report 2015/1198, 2015.
http://eprint.iacr.org/2015/1198.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423 of LNCS. Springer, Hei-
delberg, 1998. Invited paper.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Serge Vaudenay, edi-
tor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
Heidelberg, May / June 2006.

[CCD+16] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal mes-
saging protocol. Cryptology ePrint Archive, Report 2016/1013, 2016.
http://eprint.iacr.org/2016/1013.

[DRS20] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible authenticated
and confidential channel establishment (fACCE): Analyzing the noise pro-
tocol framework. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
341–373. Springer, Heidelberg, May 2020.

[JKSS10] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic
compilers for authenticated key exchange. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 232–249. Springer, Heidelberg,
December 2010.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
631–648. Springer, Heidelberg, August 2010.

[Kra18] Hugo Krawczyk. Bar-ilan winter school. IACR Cryptology ePrint Archive,
2018.

[KW15] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and
TLS 1.3. Cryptology ePrint Archive, Report 2015/978, 2015.
http://eprint.iacr.org/2015/978.

[Res18] Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC,
8446:1–160, 2018.

[Rey11] Leonid Reyzin. Some notions of entropy for cryptography - (invited talk).
In Serge Fehr, editor, ICITS 11, volume 6673 of LNCS, pages 138–142.
Springer, Heidelberg, May 2011.

I
n
i
t
()
→

({
0
,1}

l)

re
tu

rn
I
n
i
t
,C
R
I
n
i
t
()

(rep
la
ced

by
cod

e)

a
sse

rt
S
E
x
t

=
⊥

S
E
x
t ←

${
0
,1}

sl

a
sse

rt
S
c
r

=
⊥

S
c
r
←

${
0
,1}

sl

re
tu

rn
S
E
x
t ,S

c
r

C
R
D
e
r
i
v
e
(h
,ctx1

,ctx2
)
→

()

if
T

[ctx1
]
=
⊥

:
if

T
[ctx1

]
=
⊥

:
if

T
[ctx1

]
=
⊥

:
if

T
[ctx1

]
=
⊥

:
if

T
[ctx1

]
=
⊥

:
if

T
[ctx1

]
=
⊥

:

T
[ctx1

]←
h

T
[ctx1

]←
h

T
[ctx1

]←
h

T
[ctx1

]←
h

T
[ctx1

]←
h

T
[ctx1

]←
h

a
sse

rt
T

[ctx1
]
=

h
a
sse

rt
T

[ctx1
]
=

h
a
sse

rt
T

[ctx1
]
=

h
a
sse

rt
T

[ctx1
]
=

h
a
sse

rt
T

[ctx1
]
=

h
a
sse

rt
T

[ctx1
]
=

h

a
sse

rt
S
E
x
t 6=
⊥
,S

c
r
6=
⊥

a
sse

rt
S
E
x
t 6=
⊥
,S

c
r
6=
⊥

k
,h

o
n

v
e
c
←

G
e
t
(h

)
k
,h

o
n

v
e
c
←

G
e
t
(h

)
k
,h

o
n

v
e
c
←

G
e
t
(h

)
k
,h

o
n

v
e
c
←

G
e
t
(h

)

k
′←

f
c
r
N
K
D
F (k

,ctx1
,o
l,S

E
x
t ,ctx2

,S
c
r)

k
v
e
c
←

x
t
r
(S

E
x
t ,k

)
k

v
e
c
←

x
t
r
(S

E
x
t ,k

)
(rep

la
ced

w
ith

fu
n
ctio

n
f
c
r
N
K
D
F)

fo
r
i
∈
{
0
,...,|h|−

1}
:

fo
r
i
∈
{
0
,...,|h|−

1}
:

fo
r
i
∈
{
0
,...,|h|−

1}
:

fo
r
i
∈
{
0
,...,|h|−

1}
:

fo
r
i
∈
{
0
,...,|h|−

1}
:

(rep
la
ced

w
ith

fu
n
ctio

n
f
c
r
N
K
D
F)

X
T
R
(h

i)
(rep

la
ced

by
cod

e)

a
sse

rt
S
E
x
t 6=
⊥

a
sse

rt
S
E
x
t 6=
⊥

a
sse

rt
S
E
x
t 6=
⊥

(m
o
ved

u
p
)

k
,h
o
n
←

G
e
t
(h

i)
(u
sin

g
vecto

r
a
ssign

m
en

t
n
o
ta
tio

n
)

k
′←

x
t
r
(S

E
x
t ,k

)
k
′←

x
t
r
(S

E
x
t ,k

i)
(u
se

vecto
r
a
ssigm

en
t
n
o
ta
tio

n
)

S
e
t
(h

i ,k
′,h

o
n

)
S
e
t
(h

i ,k
′,h

o
n
i)

(d
ro
p
S
et-th

en
-G

et)

E
v
a
l
(h

i ,(ctx1
,i))

(rep
la
ced

by
cod

e)

if
T

P
R
F

[(ctx1
,i)]

=
⊥

:
(red

u
n
d
a
n
t
ch
eck,

rem
o
ved

)

T
P
R
F

[(ctx1
,i)]←

h
i

(red
u
n
d
a
n
t
a
ssign

m
en

t,
rem

o
ved

)

a
sse

rt
T

P
R
F

[(ctx1
,i)]

=
h
i

(red
u
n
d
a
n
t
ch
eck,

rem
o
ved

)

k
,h
o
n
←

G
e
t
(h

i)
k
,h
o
n
←

G
e
t
(h

i)
(d
ro
p
S
et-th

en
-G

et)

k
′←

f
P
R
F (k

,(ctx1
,i),o

l)
k
′←

f
P
R
F (k

,(ctx1
,i),o

l)
k
′←

f
P
R
F (k

i ,(ctx1
,i),o

l)
k
i ←

f
P
R
F (k

i ,(ctx1
,i),o

l)
(rep

la
ced

w
ith

fu
n
ctio

n
f
c
r
N
K
D
F)

S
e
t
((ctx1

,i),k
′,h

o
n

)
S
e
t
((ctx1

,i),k
′,h

o
n

)
S
e
t
((ctx1

,i),k
′,h

o
n
i)

(d
ro
p
S
et-th

en
-G

et)

X
O
R
(ctx1

,(0
,...,|h|−

1
))

(rep
la
ced

by
cod

e)

if
T

X
O
R

[ctx1
]
=
⊥

:
(red

u
n
d
a
n
t
ch
eck,

rem
o
ved

)

T
X
O
R

[ctx1
]←

s
o
r
t
((0
,...,|h|−

1
))

(red
u
n
d
a
n
t
a
ssign

m
en

t,
rem

o
ved

)

a
sse

rt
T

X
O
R

[ctx1
]
=

s
o
r
t
((0
,...,|h|−

1
))(red

u
n
d
a
n
t
ch
eck,

rem
o
ved

)

k
,h

o
n

v
e
c
←

G
e
t
((ctx1

,(0
,...,|h|−

1
)))

k
,h

o
n

v
e
c
←

G
e
t
((ctx1

,(0
,...,|h|−

1
)))

k
,h

o
n

v
e
c
←

G
e
t
((ctx1

,(0
,...,|h|−

1
)))(d

ro
p
S
et-th

en
-G

et)

k
′← ⊕

k
k
′← ⊕

k
k
′← ⊕

k
k
′← ⊕

k
(rep

la
ced

w
ith

fu
n
ctio

n
f
c
r
N
K
D
F)

h
o
n
′← ∨

h
o
n

h
o
n
′← ∨

h
o
n

h
o
n
′← ∨

h
o
n

(m
o
ved

d
o
w
n
)

S
e
t
(ctx1

,k
′,h

o
n
′)

S
e
t
(ctx1

,k
′,h

o
n
′)

S
e
t
(ctx1

,k
′,h

o
n
′)

(d
ro
p
S
et-th

en
-G

et)

C
R
E
v
a
l
(ctx1

,ctx1
,ctx2

)
(rep

la
ced

by
cod

e)

a
sse

rt
S
c
r
6=
⊥

a
sse

rt
S
c
r
6=
⊥

a
sse

rt
S
c
r
6=
⊥

(m
o
ved

u
p
)

if
T

c
r [ctx1

]
=
⊥

:
(red

u
n
d
a
n
t
ch
eck,

rem
o
ved

)

T
c
r [ctx1

]←
ctx1

(red
u
n
d
a
n
t
a
ssign

m
en

t,
rem

o
ved

)

a
sse

rt
T

c
r [ctx1

]
=

ctx1
(red

u
n
d
a
n
t
ch
eck,

rem
o
ved

)

k
,h
o
n
←

G
e
t
(ctx1

)
k
,h
o
n
←

G
e
t
(ctx1

)
k
,h
o
n
←

G
e
t
(ctx1

)
(d
ro
p
S
et-th

en
-G

et)

k
′←

f
c
r
P
R
F (k

,(ctx1
,ctx2

),S
c
r)

k
′←

f
c
r
P
R
F (k

,(ctx1
,ctx2

),S
c
r)

k
′←

f
c
r
P
R
F (k

,(ctx1
,ctx2

),S
c
r)

k
′←

f
c
r
P
R
F (k

′,ctx1
,S

c
r)

(rep
la
ced

w
ith

fu
n
ctio

n
f
c
r
N
K
D
F)

h
o
n
′← ∨

h
o
n

h
o
n
′← ∨

h
o
n

S
e
t
((ctx1

,ctx2
),k

′,h
o
n

)
S
e
t
((ctx1

,ctx2
),k

′,h
o
n

)
S
e
t
((ctx1

,ctx2
),k

′,h
o
n

)
S
e
t
((ctx1

,ctx2
),k

′,h
o
n

)
S
e
t
((ctx1

,ctx2
),k

′,h
o
n

)

F
ig.22:

In
lin

in
g

N
K

D
F

I
n
i
t
()
→

({
0
,1
}l

)

re
tu

rn
I
n
i
t
,C
R
I
n
i
t
()

(r
ep
la
ce
d
by

co
d
e)

a
ss
e
rt

S
E
x
t

=
⊥

S
E
x
t
←

$
{0
,1
}s

l

a
ss
e
rt

S
c
r

=
⊥

S
c
r
←

$
{0
,1
}s

l

re
tu

rn
S
E
x
t
,S

c
r

C
R
D
e
r
i
v
e
(p

k
X
,p

k
Y
,c
tx
1
,c
tx
2

)
→

()

a
ss
e
rt
|p
k
X
|=
|p
k
Y
|

(p
k
X
,p

k
Y

)
v
e
c
←

s
o
r
t
(p

k
X
,p

k
Y

)

if
T

[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:
if

T
[c
tx
1

]
=
⊥

:

T
[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)
T

[c
tx
1

]
←

(p
k
X
,p

k
Y

)

a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)
a
ss
e
rt

T
[c
tx
1

]
=

(p
k
X
,p

k
Y

)

a
ss
e
rt

S
E
x
t
6=
⊥

a
ss
e
rt

S
E
x
t
6=
⊥

a
ss
e
rt

S
E
x
t
6=
⊥
,S

c
r
6=
⊥

a
ss
e
rt

S
E
x
t
6=
⊥
,S

c
r
6=
⊥

sk
X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)
sk

X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)
sk

X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)
sk

X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)
sk

X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)
sk

X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)
sk

X
,h

o
n
X

v
e
c
←

G
e
t
(p

k
X

)

sk
Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)
sk

Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)
sk

Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)
sk

Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)
sk

Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)
sk

Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)
sk

Y
,h

o
n
Y

v
e
c
←

G
e
t
(p

k
Y

)

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

h
o
n

v
e
c
←

h
o
n
X
∧
h
o
n
Y

sk
,p

k
←

p
i
c
k
(s
k
X
,p

k
X
,s
k
Y
,p

k
Y

)
sk
,p

k
←

p
i
c
k
(s
k
X
,p

k
X
,s
k
Y
,p

k
Y

)
sk
,p

k
←

p
i
c
k
(s
k
X
,p

k
X
,s
k
Y
,p

k
Y

)
sk
,p

k
←

p
i
c
k
(s
k
X
,p

k
X
,s
k
Y
,p

k
Y

)
sk
,p

k
←

p
i
c
k
(s
k
X
,p

k
X
,s
k
Y
,p

k
Y

)
sk
,p

k
←

p
i
c
k
(s
k
X
,p

k
X
,s
k
Y
,p

k
Y

)

k
v
e
c
←

p
k
s
k

k
v
e
c
←

p
k
s
k

k
v
e
c
←

p
k
s
k

k
v
e
c
←

p
k
s
k

k
v
e
c
←

p
k
s
k

k
v
e
c
←

p
k
s
k

k
′
←

f
c
r
N
K
D
F
(k
,c
tx
1
,o
l,
S
E
x
t
,c
tx
2
,S

c
r
)

k
v
e
c
←

x
t
r
(S

E
x
t
,k

)
k

v
e
c
←

x
t
r
(S

E
x
t
,k

)
k

v
e
c
←

x
t
r
(S

E
x
t
,k

)
(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
K
D
F
)

fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
fo
r
i
∈
{0
,.
..
,|
p
k
X
|−

1
}

:
(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
K
D
F
)

P
o
w
(p

k
X

i
,p

k
Y

i
)

(r
ep
la
ce
d
by

co
d
e)

sk
X
,x
H
o
n
←

G
e
t
(p

k
X

i
)

(r
ep
la
ce
d
by

ve
ct
o
r
a
ss
ig
n
m
en

t
n
o
ta
ti
o
n
)

sk
Y
,y
H
o
n
←

G
e
t
(p

k
Y

i
)

(r
ep
la
ce
d
by

ve
ct
o
r
a
ss
ig
n
m
en

t
n
o
ta
ti
o
n
)

a
ss
e
rt

sk
X
6=
⊥
∨
sk
Y
6=
⊥

a
ss
e
rt

sk
X

i
6=
⊥
∨
sk

Y
i
6=
⊥

(m
o
ve
d
u
p
-
p
i
c
k
th
en

ex
po
n
en

ti
a
te
)

if
sk
X
6=
⊥

:
if

sk
X

i
6=
⊥

:
(m

o
ve
d
u
p
-
p
i
c
k
th
en

ex
po
n
en

ti
a
te
)

k
←

p
k
Y

sk
X

i
k
←

p
k
Y

s
k
X

i
(m

o
ve
d
u
p
-
p
i
c
k
th
en

ex
po
n
en

ti
a
te
)

e
ls
e

:
e
ls
e

:
(m

o
ve
d
u
p
-
p
i
c
k
th
en

ex
po
n
en

ti
a
te
)

k
←

p
k
X

sk
Y

i
k
←

p
k
X

s
k
Y

i
i

(m
o
ve
d
u
p
-
p
i
c
k
th
en

ex
po
n
en

ti
a
te
)

p
k
X

i
,p

k
Y

i
←

s
o
r
t
(p

k
X

i
,p

k
Y

i
)

(r
ed
u
n
d
a
n
t
o
pe
ra
ti
o
n
)

S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
,x
H
o
n
∧
yH

o
n

)
S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
,h

o
n
i
)

S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
i
,h

o
n
i
)

(d
ro
p
S
et
-t
h
en

-G
et
)

X
T
R
(p

k
X

i
,p

k
Y

i
)

(r
ep
la
ce
d
by

co
d
e)

a
ss
e
rt

S
E
x
t
6=
⊥

a
ss
e
rt

S
E
x
t
6=
⊥

a
ss
e
rt

S
E
x
t
6=
⊥

a
ss
e
rt

S
E
x
t
6=
⊥

(m
o
ve
d
u
p
)

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

(d
ro
p
S
et
-t
h
en

-G
et
)

k
′
←

x
t
r
(S

E
x
t
,k

)
k
′
←

x
t
r
(S

E
x
t
,k

)
k
′
←

x
t
r
(S

E
x
t
,k

)
k
′
←

x
t
r
(S

E
x
t
,k

i
)

(u
se

ve
ct
o
r
a
ss
ig
m
en

t
n
o
ta
ti
o
n
)

S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
′ ,
h
o
n

)
S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
′ ,
h
o
n

)
S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
′ ,
h
o
n

)
S
e
t
((
p
k
X

i
,p

k
Y

i
),
k
′ ,
h
o
n
i
)

(d
ro
p
S
et
-t
h
en

-G
et
)

E
v
a
l
(p

k
X

i
,p

k
Y

i
,(
ct
x1
,i

))
(r
ep
la
ce
d
by

co
d
e)

if
T

P
R
F

[(
ct
x1
,i

)]
=
⊥

:
(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

T
P
R
F

[(
ct
x1
,i

)]
←

(p
k
X

i
,p

k
Y

i
)

(r
ed
u
n
d
a
n
t
a
ss
ig
n
m
en

t,
re
m
o
ve
d
)

a
ss
e
rt

T
P
R
F

[(
ct
x1
,i

)]
=

(p
k
X

i
,p

k
Y

i
)

(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

k
,h
o
n
←

G
e
t
((
p
k
X

i
,p

k
Y

i
))

(d
ro
p
S
et
-t
h
en

-G
et
)

k
′
←

f
P
R
F
(k
,(
ct
x1
,i

),
o
l)

k
′
←

f
P
R
F
(k
,(
ct
x1
,i

),
o
l)

k
′
←

f
P
R
F
(k
,(
ct
x1
,i

),
o
l)

k
′
←

f
P
R
F
(k
,(
ct
x1
,i

),
o
l)

k
i
←

f
P
R
F
(k

i
,(
ct
x1
,i

),
o
l)

k
i
←

f
P
R
F
(k

i
,(
ct
x1
,i

),
o
l)

k
i
←

f
P
R
F
(k

i
,(
ct
x1
,i

),
o
l)

(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
K
D
F
)

S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,i

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,i

),
k
i
,h

o
n
i
)

(d
ro
p
S
et
-t
h
en

-G
et
)

X
O
R
(c
tx
1
,(

0
,.
..
,|
h
|−

1
))

(r
ep
la
ce
d
by

co
d
e)

if
T

X
O
R

[c
tx
1

]
=
⊥

:
(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

T
X
O
R

[c
tx
1

]
←

s
o
r
t
((

0
,.
..
,|
h
|−

1
))

(r
ed
u
n
d
a
n
t
a
ss
ig
n
m
en

t,
re
m
o
ve
d
)

a
ss
e
rt

T
X
O
R

[c
tx
1

]
=

s
o
r
t
((

0
,.
..
,|
h
|−

1
))

(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
k
,h

o
n

v
e
c
←

G
e
t
((
ct
x1
,(

0
,.
..
,|
h
|−

1
))

)
(d
ro
p
S
et
-t
h
en

-G
et
)

k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
k
′
←

⊕ k
(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
K
D
F
)

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

(m
o
ve
d
d
o
w
n
)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

S
e
t
(c
tx
1
,k

′ ,
h
o
n
′)

(d
ro
p
S
et
-t
h
en

-G
et
)

C
R
E
v
a
l
(c
tx
1
,c
tx
1
,c
tx
2

)
(r
ep
la
ce
d
by

co
d
e)

a
ss
e
rt

S
c
r
6=
⊥

a
ss
e
rt

S
c
r
6=
⊥

a
ss
e
rt

S
c
r
6=
⊥

a
ss
e
rt

S
c
r
6=
⊥

a
ss
e
rt

S
c
r
6=
⊥

a
ss
e
rt

S
c
r
6=
⊥

(m
o
ve
d
u
p
)

if
T

c
r
[c
tx
1

]
=
⊥

:
(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

T
c
r
[c
tx
1

]
←

ct
x1

(r
ed
u
n
d
a
n
t
a
ss
ig
n
m
en

t,
re
m
o
ve
d
)

a
ss
e
rt

T
c
r
[c
tx
1

]
=

ct
x1

(r
ed
u
n
d
a
n
t
ch
ec
k,

re
m
o
ve
d
)

k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
k
,h
o
n
←

G
e
t
(c
tx
1

)
(d
ro
p
S
et
-t
h
en

-G
et
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S
c
r
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S
c
r
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S
c
r
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S
c
r
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S
c
r
)

k
′
←

f
c
r
P
R
F
(k
,(
ct
x1
,c
tx
2

),
S
c
r
)

k
′
←

f
c
r
P
R
F
(k

′ ,
(c
tx
1
ct
x2

),
,S

c
r
)

(r
ep
la
ce
d
w
it
h
fu
n
ct
io
n
f
c
r
N
K
D
F
)

h
o
n
′
←

∨ h
o
n

h
o
n
′
←

∨ h
o
n

S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)
S
e
t
((
ct
x1
,c
tx
2

),
k
′ ,
h
o
n

)

F
ig

.2
3:

In
li

n
in

g
D

H
N

K
D

F

