P4DNS: In-Network DNS

Jackson Woodruff, Murali Ramanujam, Noa Zilberman

University of Cambridge

April 7th, 2020
Introduction

- Networks continue to increase bandwidths without achieving much latency reduction.
- Latency is particularly important in data center networks.
- In-network computing brings network computation closer to its use.
- We develop P4DNS using P4 → NetFPGA
 - 52x throughput improvement and 100x latency reduction over NSD
 - Identify areas where P4 is ill-suited for developing traditional applications on an FPGA.
Architecture

Data Plane (P4) + Control Plane (Python)
Design Lessons: Hardware for Traditional Protocols

- Control plane is a bottleneck:
 - Protocols with mutable state tax this bottleneck.
- Existing protocols are designed for software:
 - DNS uses C-style strings.
 - String length is not clear until you have reached the last character.
Design Lessons: Hardware for Traditional Protocols

- Control plane is a bottleneck:
 - Protocols with mutable state tax this bottleneck.
- Existing protocols are designed for software:
 - DNS uses C-style strings.
 - String length is not clear until you have reached the last character.

But, partial implementations can work:
- P4DNS achieves 52x throughput improvement and 100x latency improvement.
P4 on Hardware Limitations

- Field length limitations: 384 bits.
- Complex parsing state machines used excessive hardware resources on FPGAs.
P4 on Hardware Limitations

- Field length limitations: 384 bits.
- Complex parsing state machines used excessive hardware resources on FPGAs.

- For many applications, a simple bitstream is enough.
- FPGAs remove some advantages (recursion) of state machines.
Conclusion

- We implemented P4DNS, a DNS accelerator integrated into a P4 switch using P4→NetFPGA.
- We demonstrated potential for large performance improvement without changing existing protocols.
- But P4 is not without limitations for hardware targets.