Transport Issues of Computing in the Network

https://www.ietf.org/id/draft-kunze-coinrg-transport-issues-01.txt

Ike Kunze, Klaus Wehrle
Changes from 00 to 01

Table of Contents

1. Introduction .. 2
2. Addressing ... 3
3. Flow granularity 3
4. Authentication .. 4
5. Security ... 5
6. Advanced Transport Features 5
 6.1. Reliability .. 5
 6.2. Flow/Congestion Control 7
7. Security Considerations 9
8. IANA Considerations 9
9. Conclusion .. 9
10. Informative References 9

Intention of the Draft: Raise Questions
Advanced Transport Features – Retransmissions

- **Who does the retransmission?**
 1. Sender
 2. Last successful position

- **How to deal with (changed) state in the intermediate nodes when packet is dropped later on the path?**
 - Do we want the notion of a transaction that should be revocable?

LOOPS BOF (Local Optimizations on Path Segments)
- Local packet loss recovery

3 draft-kunze-coinrg-transport-issues-01.txt
1. Retransmissions base on the end-to-end principle

- Sender retransmits if it has determined that receiver did not get original message
 - Sender and receiver act on knowledge that a packet is missing/a retransmission

- Should COIN elements have an understanding of retransmissions?
 - On the basis of existing transport mechanisms?

- How can COIN elements identify retransmissions?
 - Should there be dedicated signals for COIN elements (in COIN-capable transport?)?
Advanced Transport Features – Retransmissions

2. Retransmissions are sent out of order
 ▶ Should COIN elements be capable of incorporating retransmissions into their computation schemes?
 ■ Depending on flow granularity, contextual information might be necessary
 ▶ How can COIN elements find out that a packet is missing?
 ■ Computations might have to be delayed

3. Retransmissions are sent by sender/ can be requested by the receiver
 ▶ Should COIN elements be capable of requesting or performing retransmissions?
 ■ This could require holding (some) transport state
Advanced Transport Features

- Other features that cause similar questions of “who is in charge?”
 - Congestion control
 - Flow control
 - Flow ordering/Sequence numbers

- Different features impose different requirements

- Which set of transport features should be supported by COIN?
 - Depends on application …
Advanced Transport Features – Flow/Congestion Control

- **Mechanisms to avoid overloading**
 - the receiving host (flow control)
 - explicit end-host information
 - the network (congestion control)
 - volatile feedback from the network

- **COIN elements introduce loss, delay, …**
 - interpreted as network congestion and accounted for in congestion control
 - (Loss-based) Congestion control will repeatedly overload COIN element

- **Should COIN elements participate in end-to-end flow control?**
 - How? Dedicated resource constraint mechanism?
Plans

- **Transport Issues Draft**
 - Aspects/Questions that we’ve missed?
 - Clarification needed?

- **Industrial Use Cases Draft**
 - Hard to get “hard” numbers for the use cases
 - How to proceed?
 - Milestone for April 2020