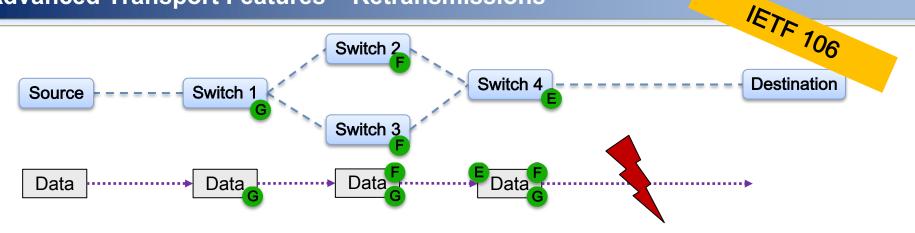


Transport Issues of Computing in the Network

https://www.ietf.org/id/draft-kunze-coinrg-transport-issues-01.txt

Ike Kunze, Klaus Wehrle


Table of Contents

	More concise
1. Introduction	
2. Addressing 3	
3. Flow granularity 3	Added Proof of Transit of SFC WG
4. Authentication 4	
5. Security 5	
6. Advanced Transport Features 5	
6.1. Reliability	Subsections & more details
6.2. Flow/Congestion Control	for advanced transport features
7. Security Considerations	·,
8. IANA Considerations	
9. Conclusion	
10. Informative References	

Intention of the Draft: Raise Questions

draft-kunze-coinrg-transport-issues-01.txt

Advanced Transport Features – Retransmissions

- Who does the retransmission?
 - 1. Sender
 - 2. Last successful position
- How to deal with (changed) state in the intermediate nodes
 when packet is dropped later on the path?
 - Do we want the notion of a transaction that should be revocable?

LOOPS BOF (Local Optimizations on Path Segments) - Local packet loss recovery

Advanced Transport Features – Retransmissions

1. Retransmissions base on the end-to-end principle

- Sender retransmits if it has determined that receiver did not get original message
 - Sender and receiver act on knowledge that a packet is missing/a retransmission
- Should COIN elements have an understanding of retransmissions?
 - On the basis of existing transport mechanisms?
- How can COIN elements identify retransmissions?
 - Should there be dedicated signals for COIN elements (in COIN-capable transport?)?

2. Retransmissions are sent out of order

- Should COIN elements be capable of incorporating retransmissions into their computation schemes?
 - Depending on flow granularity, contextual information might be necessary
- How can COIN elements find out that a packet is missing?
 - Computations might have to be delayed

3. Retransmissions are sent by sender/ can be requested by the receiver

- Should COIN elements be capable of requesting or performing retransmissions?
 - This could require holding (some) transport state

- Other features that cause similar questions of "who is in charge?" ¹⁰⁶
 - Congestion control
 - Flow control
 - Flow ordering/Sequence numbers
- Different features impose different requirements
- Which set of transport features should be supported by COIN?
 - Depends on application ...

Advanced Transport Features – Flow/Congestion Control

Mechanisms to avoid overloading

- the receiving host (flow control)
 - explicit end-host information
- the network (congestion control)
 - volatile feedback from the network
- COIN elements introduce loss, delay, ...
 - interpreted as network congestion and accounted for in congestion control
 - (Loss-based) Congestion control will repeatedly overload COIN element

Should COIN elements participate in end-to-end flow control?

How? Dedicated resource constraint mechanism?

• Transport Issues Draft

- Aspects/Questions that we've missed?
- Clarification needed?

Industrial Use Cases Draft

- Hard to get "hard" numbers for the use cases
- How to proceed?
 - Milestone for April 2020