
SenML Data Value Content-
Format Indication

draft-ietf-core-senml-data-ct-01	
Ari	Keränen,	Carsten	Bormann	

IETF	107+,	2020-04-29,	in	the	cloud

Examples

{"n":"nfc-reader", "vd":"gmNmb28YKg", "ct":"60"}

2

{"n":"nfc-reader-42",
 "vd":"H4sIAA+dmFwAAzMx0jEZMAQALnH8Yn0AAAA",
 "ct":"text/csv@gzip"}

Feature objective: extensibility

• ct	is	generally	ignorable	(like	any	new	SenML	field)	
• But	we	would	like	to	also	have	a	“must	understand”	version,	ct_

• Issue:	Interaction	between	the	two	(bct, bct_) and	resolved	
records
• Would	prefer	to	have	specific	information	(in	record)	override	base	
• But	now,	that	happens	only	separately,	within	the	thread	for	each	field	
name!

3

RFC 8428: “Must understand” and “_”?

• »Extensions	that	are	mandatory	to	understand	to	correctly	process	the	Pack	
MUST	have	a	label	name	that	ends	with	the	"_"	character.«	
• »Applications	MUST	ignore	any	JSON	key-value	pairs	that	they	do	not	
understand	unless	the	key	ends	with	the	"_"	character,	in	which	case	an	error	
MUST	be	generated.«		
(12.3.1	for	senml+json,	equivalent	text	for	other	representations)	
• So	a	receiver	is	free	to	ignore	a	key-value	combination	if	it	doesn’t	understand	
the	key	or	if	it	doesn’t	understand	the	combination	
• Note	that	foo	and	foo_	are	different	fields	from	a	SenML	perspective,	
except	possibly	by	their	semantic	definition		
• convention:	don’t	define	a	foo	and	a	foo_	that	are	unrelated

4

RFC 8428: ct, ct_, bct, bct_

• Resolving	algorithm	can	be	performed	without	understanding	field	semantics:	no	
inter-field	interaction	
• Fields	do	define	how	base	value	and	given	value	for	that	field	mix	
• 	»A	future	specification	that	defines	new	base	fields	needs	to	specify	how	the	
field	is	resolved.«	

• Resolving	is	not	influenced	by	unrelated	fields	(ct	vs.	ct_):	
It	happens	separately	for	ct	and	for	ct_	
• The	rules	applying	to	a	record	are	applied	after	resolving	

• But	we	need	to	look	at	examples	having	some	of	these	four	
and	see	whether	what	we	built	makes	sense

5

Solution option #1

• Do	not	apply	base	value	(bct	or	bct_)	if	a	current	value	(ct	or	ct_)	exists	
in	the	record	
• Not	supported	by	RFC	8428	
• Would	require	using	new	version/feature	for	SenML

6

Solution option #2

• Future	specification	need	to	specify	semantics	of	the	"safe-to-ignore"	
and	"must	understand"	versions	of	the	same	field	in	the	same	record	
• ct_	is	the	first	registration	of	"must	understand"	fields	
• Can	be	handled	as	DE	guidance	and	clarified	in	SenML-bis?	

• Easy	to	avoid	problem:	don't	mix	the	two	variants	in	the	Packs	
• but	also	need	to	enable	combining	packs	easily	

• For	ct	draft:	if	both	exist	in	the	same	Record:	ct_	overrides	ct		
(i.e.,	ignore/remove	"safe-to-ignore"	version)	
• Not	perfect,	but	we	don’t	know	better	without	new	SenML	version

7

What we don’t like about solution #2

• If	a	pack	has	a	bct_,	you	can	no	longer	usefully	use	bct	or	ct	from	that	
position	on	
• That	is	a	limitation,	but	it	doesn’t	detract	from	other	useful	
combinations	
• Workaround:	Instead	of	using	bct_,	use	ct_	once	to	check	the	must-
understand	feature;	can	use	bct	then	
	

• To	do:	designated	expert	to	write	a	wiki	page	explaining	all	this

8

Backup

9

Mixing b and _ fields:
what are the resolution rules?

10

[
 {"bfoo_":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo": 1, "n":"t3", "v":3}
]

[
 {"bfoo":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo_": 1, "n":"t3", "v":3}
]

[
 {"bfoo_":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo_": 1, "n":"t3", "v":3}
]

[
 {"bfoo":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo": 1, "n":"t3", "v":3}
]

1) 2)

3) 4)

Mixing b and _ fields: resolved

11

[
 {"bfoo_":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo": 1, "n":"t3", "v":3}
]

1)

[
 {"foo_":42, "n":"t1", "v":1},
 {"foo_":42, "n":"t2", "v":2},
 {"foo": 1, "foo_":42", "n":"t3", "v":3}
]

Mixing b and _ fields: resolved

12

[
 {"bfoo_":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo_": 1, "n":"t3", "v":3}
]

2)

[
 {"foo_":42, "n":"t1", "v":1},
 {"foo_":42, "n":"t2", "v":2},
 {"foo_": 1, "n":"t3", "v":3}
]

Mixing b and _ fields: resolved

13

[
 {"bfoo":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo_": 1, "n":"t3", "v":3}
]

3)

[
 {"foo":42, "n":"t1", "v":1},
 {"foo":42, "n":"t2", "v":2},
 {"foo_": 1, "foo":42, "n":"t3", "v":3}
]

Mixing b and _ fields: resolved

14

[
 {"bfoo":42, "n":"t1", "v":1},
 { "n":"t2", "v":2},
 {"foo": 1, "n":"t3", "v":3}
]

4)

[
 {"foo":42, "n":"t1", "v":1},
 {"foo":42, "n":"t2", "v":2},
 {"foo": 1, "n":"t3", "v":3}
]

