
New CoAP Block-Wise Transfer Options
draft-bosh-core-new-block

CoRE virtual interim 13th May 2020

Mohamed Boucadair

Jon Shallow

1

DOTS Use Case Example Environment

Internet

Local

DOTS Client

Upstream

 DOTS Server
+

Mitigation

Pipe Overload

Inbound

Firewall /

Smart Router

DOTS

Protocol

• DDoS Open Threat Signalling
(DOTS)

• DOTS: App – CBOR – CoAP – DTLS –
IP

• Client requests mitigation (NON)

• Server updates with simple DOTS
mitigation status (NON)

• Inbound Pipe Overload
– Clients Can still request mitigations

– Mitigation should be able to control
pipe overload

2

DOTS General Operation

• Configuration

– Confirmable

– Peace Time

• Mitigation Requests / Responses

– Non Confirmable

– Single Packets contain all the information

– Works with response packet loss
• E.g. Request Mitigate traffic to IP W.X.Y.Z/32

• Status updates may get lost

• Application Heartbeats

– Non Confirmable

– Initiated separately by Client and Server

– Server can detect Client alive at all times

– Client continues, even if no Server traffic seen
3

DOTS Telemetry

• DDoS Telemetry information both ways
– (Smart) Client -> Server (PUT)

– Server -> Client (GET)

• Data likely larger than Single Packet

• Without Packet Loss
– BLOCK1 and BLOCK2 fine (Non Confirmable)

• With Packet Loss (usually Server -> Client)
– Next BLOCK1 response lost

– Next BLOCK2 packet request lost

– All stalls – even when using Non Confirmable

4

Oversized Packet Handling

• Use IP Fragmentation
– Requires large receipt buffers

– Unable to recover missing fragments

• Application break up data into Chunks
– YANG <anydata> requires chunk to be full JSON as per RFC7951

– How to break data down to minimize no of chunks

• Use BLOCK1 and BLOCK2: Has limitations
– Performance (symmetric traffic requires ‘ACK’ before next block is

sent)

– Handling lossy environments

5

CoAP Options BLOCK3 and BLOCK4

• Same as BLOCK1 and BLOCK2 with additions

• All Blocks sent before ‘ACK’ required
– Similar to using fragmented IP packets

– NSTART needs to be increased if CONfirmable

• Missing Blocks can be re-requested

• Each set of Blocks have same Block ID (BID) for re-
assembly
– Could use ETag for BID, but RFC7252 says:

"An entity-tag is intended for use as a resource-local identifier for
differentiating between representations of the same resource"

6

BLOCK1 vs. BLOCK3

• BLOCK1
– If NON and no response, limited to PROBING_RATE (1

Byte/sec)

• BLOCK3
– “Body” of data subject to PROBING_RATE

• Higher transmit rate for “body” with multiple blocks as all
sent with no waiting

• Both can utilize 4.08 for missing blocks
• 4.08 needs to be extended to include array of

missing blocks in response (using repeat option
with BLOCK3?)

7

BLOCK2 vs. BLOCK4

• BLOCK2
– Server has to wait for next block request
– Copy of “body” maintained for EXCHANGE_LIFETIME

• BLOCK4
– Entire set of Blocks for “body” can be sent without

waiting
– Higher performance (negligible waits between blocks

arriving at Client)
– A Client can indicate multiple blocks are missing
– Server can ‘delete’ “body” on successful receipt
– Caches can keep data at Block and / or “body” level

8

BLOCK3 & BLOCK4 Tokens

• How should Tokens be handled
– Set of Block4 responses (same BID) – tokens all the

same?
– Affect on Proxies

• RFC7252 5.4.1:
“The Token is used to match a response with a request.”
“A token is intended for use as a client-local identifier”

• RFC7641 4.2:
“Each such notification response (including the initial response) MUST echo the
token specified by the client in the GET request.”

• RFC7959 3.4:
“requests for additional blocks cannot make use of the token of the
Observation relationship”

9

Next Steps

• RFC 8613 OSCORE implications

• Further discussion

Thank You

10

Appendix

11

Example of Mitigation Status with Telemetry

12

 {

 "ietf-dots-signal-channel:mitigation-scope": {

 "scope": [

 {

 "mid": 12332,

 "mitigation-start": "1507818434",

 "alias-name": [

 "https1",

 "https2"

],

 "lifetime": 1600,

 "status": "attack-successfully-mitigated",

 "bytes-dropped": "134334555",

 "bps-dropped": "43344",

 "pkts-dropped": "333334444",

 "pps-dropped": "432432",

 "ietf-dots-telemetry:total-attack-traffic": [

 {

 "ietf-dots-telemetry:unit": "megabit-ps",

 "ietf-dots-telemetry:mid-percentile-g": "900"

 }

],

 "ietf-dots-telemetry::attack-detail": [

 {

 "ietf-dots-telemetry:vendor-id": 1234,

 "ietf-dots-telemetry:attack-id": 77,

 "ietf-dots-telemetry:source-count": {

 "ietf-dots-telemetry:peak-g": "10000"

 }

 }

]

 }

]

 }

 }

13

 {

 "ietf-dots-telemetry:telemetry": {

 "pre-or-ongoing-mitigation": [

 {

 "tmid": 123,

 "target": {

 "target-prefix": [

 "2001:db8::1/128"

]

 },

 "target-protocol": [

 17

],

 "total-attack-traffic": [

 {

 "unit": "megabit-ps",

 "mid-percentile-g": "900"

 }

],

 "attack-detail": [

 {

 "vendor-id": 1234,

 "attack-id": 77,

 "start-time": "1957818434",

 "attack-severity": "high"

 }

]

 }

]

 }

 }

Example of DOTS Telemetry

