New CoAP Block-Wise Transfer Options
draft-bosh-core-new-block

CoRE virtual interim, 10t June 2020

Mohamed Boucadair
Jon Shallow

Sample Target Deployment

Upstream

DOTS Server\

—+

Mitigation Internet

P

Pipe Overload
DOTS Inbound
rotocol

Local
DOTS Client

Firewall /
Smart Router

DDoS Open Threat Signalling (DOTS)
DOTS: App — CBOR — CoAP — DTLS - IP
Client requests mitigation (NON)

Server updates with simple DOTS
mitigation status (NON)
Inbound Pipe Overload

— Clients can still request mitigations

— Mitigation should be able to control pipe
overload

See RFC8782 for more details

https://www.rfc-editor.org/rfc/rfc8782.html

Summary of Updates Since -00

Applicability Scope added

Guards to prevent a CoAP agent from overloading the
network

— PROBING_RATE clarification

— MAX_PAYLOADS defined, with a default value of 10

Detailed description of Block3/Block4 Option
— Block3 no longer repeatable
— New CoAP Response Code for missing blocks

Block3/Block4 RFC8613 definitions included

Text tidy up

Block3 Updates (1 of 2)

‘A’ Bit removed. Replaced by ‘U’ bit for future use

* Block ID (BID)

— Need to differentiate between different PUTs (with
different body) to same resource

 To handle failure conditions

— Unable to use Token here as alternative as each
request must have a different token

— Cannot have a value of 0 (Block4 special case)
* Tokens must not be empty
— Each PUT has different Token
— Error responses for particular block can be handled

Block3 Updates (2 of 2)

Partial body clean up comments

4.08 (Request Entity Not Complete) not

recommended

— Blocks may arrive out of order (no longer “lock
stepping”)

New TBA3 (4.18) (Missing Payloads) instead of

4.08

— Indicates missing blocks in response payload
* CBOR encoded — count + list of missing block numbers

2.31 (Continue) not used

Block3: An Example

CoAP CoAP
Client Server
| |

fom————— >| NON PUT /path M: Ox05 T: :11/0/1/1024

+-——>X | NON PUT /path M:0x06 T:0xel B3:11/1/1/1024

+-——>X | NON PUT /path M:0x07 T:0xe2 B3:11/2/1/1024

fomm—————— >| NON PUT /path M:0x08 T:0xe3 B3:11/3/0/1024
[[Server realizes missing blocks and indicates this]]

| <————————— + NON 4.18 M:0xf2 T:0xe3 [Missing 1,2]

fom———— >| NON PUT /path M:0x09 T:0xed4 B3:11/1/1/1024

+--->X | NON PUT /path M:0x0a T:0xe5 B3:11/2/1/1024
[[Server requests final missing block]]

| <————————— + NON 4.18 M:0xf3 T:0xed4d [Missing 2]

fomm———— - >| NON PUT /path M:0x0b T:0xe6 B3:11/2/1/1024

| <————————- + NON 2.04 M:0xf4 T:0xeb6

Block4 Updates

* ‘A’ Bit removed. Replaced by ‘U’ bit for future use

* Block ID (BID)

— Needed to indicate which “body” is missing some
blocks

— Cannot use ETag as an alternative here
e 2.03 (Valid) response usage conflicts here

— Each “body” response must have a non zero BID value
 Random initial value — MUST be different per “body”

— Can only have a value of 0 when requesting all blocks
of (new) “body”

Block4 Example

CoAP CoAP
Client Server Blockd
| |
s [/ Observe
[[Observe triggered]]

| <————————- + NON 2.05 M:0xf9 T:0xf0 0:1236 B4:23/0/1/1024
| X<-—-—4+ NON 2.05 M:0xfa T:0xf0 0:1236 B4:23/1/1/1024
| X<-—-—4+ NON 2.05 M:0xfb T:0xf0 0:1236 B4:23/2/1/1024
| <————————- + NON 2.05 M:0xfc T:0xf0 0:1236 B4:23/3/0/1024

[[Client realizes blocks are missing and asks for the missing

ones 1in one go]]
F———————— >| NON GET /path M:0x02 T:0xfl B4:23/1/0/1024 \
| | B4:23/2/0/1024
| X<---+ NON 2.05 M:0xfd T:0xfl B4:23/1/1/1024

| <————————= + NON 2.05 M:0xfe T:0xfl B4:23/2/1/1024
[[Client gets final missing block]]
f———— >| NON GET /path M:0x03 T:0xf2 B4:23/1/0/1024

| <————————- + NON 2.05 M:0xff T:0xf2 B4:23/1/1/1024

Next Steps

* Further discussion
* Consider adopting as a WG Document

Thank You

