
New CoAP Block-Wise Transfer
Options For Faster Transmission

draft-ietf-core-new-block-01

IETF CoRE Meeting, 22nd Oct 2020

Mohamed Boucadair

Jon Shallow

1

https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01

Agenda

• Requirements Reminder

• -01 Updates

• Implementation Observations

• Next Steps

2

Reminder

• Fast Transmission of data

– Subject to Congestion Control

• Block transmission loss recovery

• Unidirectional NON Blocks support

• Handle unidirectional traffic loss

• Modelled on Block1 / Block2

• Addition to, not replacement for, Block1 /
Block2

3

Updates in -01 (09/2020)

• Updated the Applicability Scope

• Removed the TBA3 (Missing Payloads), using 4.08 instead

• Renamed the options to Quick-Block1/2

– The options are marked as unsafe

– The caching behaviour is updated

• Moved the CC text to a (new) dedicated section

• Avoided the normative language for the usage of Tokens
A new (short) section is added for the token discussion

• Other edits to enhance the readability of the document

4

https://tools.ietf.org/html/draft-ietf-core-new-block-01
https://tools.ietf.org/html/draft-ietf-core-new-block-01

Implementation Approach

• Using libcoap

– PR #554 raised to move all Block1/2 handling into
libcoap instead of being done in the application

– Have additional libcoap code to support Quick-
Block1/2 leveraging on #554

• Code will become a PR at some point

• Some observations from the implementation
work are discussed next

5

https://github.com/obgm/libcoap/pull/554
https://github.com/obgm/libcoap/pull/554

Mutual Support

• Support of both Quick-Block1/2
– Currently independently supported
– Makes tracking of which is supported more difficult

• Especially if both of them are sent in a request

• RFC 7252 critical option reporting is unclear
– CON 4.02 diagnostic payload (formatted how?)

"This response SHOULD include a diagnostic payload describing the unrecognized
option(s)“ (Section 5.4.1)

– libcoap returns bad critical option as an option
– NON returns RST

• Suggestion: Recommend that either both Quick-Block1/2

supported or neither
– Thoughts?

6

https://tools.ietf.org/html/rfc7252section-5.4.1
https://tools.ietf.org/html/rfc7252section-5.4.1

Congestion Control
 • MAX_PAYLOADS (default every 10 packets)

– Default wait of ACK_TIMEOUT before proceeding

– Use of CON every MAX_PAYLOAD for reduction of turnaround times

– CON fails if unidirectional traffic loss

– NON will wait for ACK_TIMEOUT before next packet sent

• Issue: NON reduction of turnaround times
– Cannot assume MAX_PAYLOADS is same at both ends for trigger

• Suggestion: NON: Signal something in the MAX_PAYLOAD packet to
indicate immediate acknowledge response required
– if response fails to get through there still will be ACK_TIMEOUT wait which is OK

• Question: What to add?
– Update the Quick-Block option format to “NUM R M SZX” where R bit set means:

• Quick-Block1 – Respond with 2.31

• Quick-Block2 – Issue GET for next block

7

Quick-Block2 Implementation

• Quick-Block2 was the easiest to implement
– Size required for missing blocks (as options) difficult to

compute

– Dependent on ‘block.num’ value

– Will they all fit into a request packet

• Suggestion: Limit the number of missing Quick-
Block2 options to MAX_PAYLOADS. This also then
ties in nicely with what a server can send at once
– Thoughts?

8

Quick-Block1 implementation (1)

• CDDL for 4.08 response payload

– Struggled to get this right for CBOR only

– Now have how it should be defined (thanks
Carsten)

• Had to add limited CBOR knowledge to
libcoap

9

https://core-wg.github.io/new-block/draft-ietf-core-new-block.html

• There are lot of Tokens to track
– MAX_PAYLOAD of Tokens at a time
– Last packet of MAX_PAYLOAD may not arrive

• Which Token should be used for a failure response?

• Suggestion: There is an “associated response”

a.k.a., Observer. Is it worth considering an
“associated request” for Quick-Block1 where all
the Tokens are the same?
– Any request retry for missing Quick-Block1s would

have a different Token

10

Quick-Block1 implementation (2)

Next Steps

• Prepare -02 with the outcome of the discussion
– Milestone: to be ready for IETF#109

• Update the implementation
• If no major issue, target a WGLC

• Please review and share comments:

https://github.com/core-wg/new-block

Thank You
11

https://github.com/core-wg/new-block
https://github.com/core-wg/new-block
https://github.com/core-wg/new-block
https://github.com/core-wg/new-block
https://github.com/core-wg/new-block
https://github.com/core-wg/new-block
https://github.com/core-wg/new-block

Sample Target Deployment

Internet

Local

DOTS Client

Upstream

 DOTS Server
+

Mitigation

Pipe Overload

Inbound

Firewall /

Smart Router

DOTS

Protocol

• DDoS Open Threat Signalling (DOTS)

• DOTS: App – CBOR – CoAP – DTLS – IP

• Client requests mitigation (NON)

• Server updates with simple DOTS
mitigation status (NON)

• Inbound Pipe Overload
– Clients can still request mitigations

– Mitigation should be able to control pipe
overload

• See RFC8782 for more details

12

https://www.rfc-editor.org/rfc/rfc8782.html

