DRIP Implementation Drafts

draft-wiethuechter-drip-auth-03
draft-wiethuechter-drip-identity-claims-00

Adam Wiethuechter
DRIP WG – AUG20 Interim; 26 AUG 2020
From the DRIP Charter

DRIP’s goal is to specify how RID can be made trustworthy and available in both Internet and local-only connected scenarios.
The DRIP HHIT Solution

• Use the HHIT as the UAS ID
 • See draft-moskowitz-drip-uas for details

• Use the small signature size of EdDSA25519
 • Easily fits in ASTM Authentication Message
 • UA HHIT (16) + Timestamp (4) + Signature (64) = 84 bytes out of 109 bytes
 • 25 bytes left for data to be signed
 • GEN 2: Provable Binding (when using HHIT as UAS ID)

• Increase Auth. Page limit from 5 to 10
 • We have approached ASTM and they have been receptive to this change

• Add Forward Error Correction to help loss of pages in Bluetooth 4.X

• Send short Certificate via Authentication Message making RID trustworthy in local-only scenarios
 • GEN 1: Provable Ownership; GEN 3: Provable Registration
DRIP Authentication Framing

General Frame, Wrapper Frame
General Frame

- Reed Solomon FEC always fills last page
 - Taken over all pages (inc. headers)
 - SHOULD on Bluetooth 4
 - SHOULD NOT on Bluetooth 5
- 223 bytes of data w/o FEC
- 200 bytes of data w/FEC
DRIP Header

- Independent FEC flag
 - Each DRIP AuthType specifies if using FEC
- 7 bit space broken into 5 areas
 - Half (8) of Wrapped Messages defined
 - One (1) Certificate defined
- 128 possible DRIP AuthTypes
 - 9 total currently defined
FEC & Bluetooth

• Bluetooth (both 4 and 5) have a 3 byte CRC in every frame
 • Full frame is dropped if CRC check fails within Bluetooth stack
 • No signal to upper layers that a frame is being dropped

• To RID applications, we missed;
 • Under BT4 a full message or Authentication page
 • Under BT5 a full Message Pack
How does this help us?

• Authentication pages are numbered (part of the Auth. Header already defined by ASTM) so we know which pages are missing in a set
 • sets are defined using the AD Counter

• Reed Solomon can correct 23 bytes of error when we know positions of data lost (known as *erasures*) – which we do!
 • So if we rebuild frames filling in known header bytes (Message Type, ASTM Version, Authentication Type and Page Number) we can correct for 23 bytes which is missing page data
End results...

• For Bluetooth 4, FEC gives us an advantage of recovery if any single page is lost in transmission
 • If any more are lost recovery is impossible but if that happens probably more issues going on anyways

• For Bluetooth 5, FEC is useless as it already has FEC at the frame level before CRC check
 • Only with LE Coded PHY, which is what is specified by ASTM

• Also for Bluetooth 5, FEC is useless as per ASTM the Message Pack must be used
 • This uses the 255 byte extended Bluetooth 5 payload to fit multiple ASTM Messages in single frame
 • So if we lose a Bluetooth 5 frame we are already losing anyways as a full Authentication Message was together, not physically paged like Bluetooth 4
Wrapper Frame

• Fits inside General Frames DRIP Auth. Data

• Authentication Data
 • 116 bytes with FEC
 • 139 bytes w/o FEC

• Signature computed over all preceding data fields in Wrapper Frame
 • Avoid DRIP Header as can change (FEC bit) after signing
[Trust] Timestamp Details

- Different types of timestamp in ecosystem:
 - ASTM Authentication Message [4 bytes]
 - Offset from 01/01/2019 00:00:00
 - 32 bit unsigned UNIX [4 bytes]
 - UTM (ISO8601) [? bytes]

- Discussion on list concluded: use ASTM style for everything
 - No need for anything before 2019-01-01, so ASTM way of doing things is reasonable
Bluetooth 4.X Auth. Formats

Wrapped ASTM Message(s), Certificate, Manifest(s)
1-5 Wrapped ASTM Message(s)

• DRIP AuthTypes 1-5
 • AuthType signals number of messages being wrapped

• Wrapper Frame Auth. Data filled with ASTM Messages
 • Messages must be in Message Type order

• Special Case: 5 Wrapped Messages
 • Acts as a pseudo-ASTM Message Pack (Type 0xF) over Bluetooth 4
 • FEC MUST be disabled to fit all messages
 • Can fit all ASTM Messages excluding an Auth. Message
Manifests

• DRIP AuthTypes 6, 7
• Wrapper Frame Auth. Data filled with hashes
 • Hashes are of previous non-paged messages sent
• Two special hashes for pseudo-blockchain
 • Links manifests together
 • Hash of previous manifest
 • Hash of current manifest
 • Order of operations?
• Two variants based on hash length; 8 bytes and 4 bytes
 • 27 hashes with 4 bytes, 12 hashes with 8 bytes
 • Uses same hash algorithm as HHIT (in UAS RID this is cSHAKE128)
 • Can use OGA ID of HHIT to signal different hashing methods
Certificate: Registry on Aircraft (Cra)

- DRIP AuthType 16
- General Frame DRIP Auth. Data filled with Cra
 - Exactly 200 bytes in length
 - Binding between entities, asserting trust
 - Contains HI of UA; instant verification of UA
 - Registry HHIT used for lookup on local cached Registry list
 - On Observer device, only ones trusted by User
- See draft-wiethuechter-drip-identity-claims for details
Bluetooth 5.X Auth. Formats

0 Wrapped ASTM Message(s), Certificate
Certificate: Registry on Aircraft (Cra)

• DRIP AuthType 16
• General Frame DRIP Auth. Data filled with Cra
 • See draft-wiethuechter-drip-identity-claims
• Last 25 bytes of Message Pack can be filled with another ASTM Message
 • Suggested to use Location Message
0 Wrapped ASTM Message(s)

- DRIP AuthType 0
- Special case of Wrapped ASTM Message(s) format
 - Only used for Message Pack under Bluetooth 5.X
- Wrapper Frame Auth. Data *virtually* filled with ASTM Messages in Message Pack
 - Messages must be in Message Type order
DRIP AuthType Tree

ASTM Authentication Data

General Frame
- DRIP Header
- DRIP Authentication Data
 [Reed Solomon FEC]

Certificate

Wrapper Frame
- HHIT
- Trust Timestamp
- Payload
- Signature

0 Wrapped ASTM Messages

1-5 Wrapped ASTM Message(s)

Manifest

8 Byte Manifest

4 Byte Manifest
Identity Claims/Certificates

Building a trustworthy chain for Broadcast RID
Overview

• Claim vs Certificate
 • Claim was chosen initially as “certificate” has a pre-establish connotation
 • Legal and technology baggage with the term and want to avoid confusion
 • This decision is in flux and we would like feedback on it! (we are now back on Certificate)

• Special to the UAS ecosystem for Remote ID
 • Asserts bindings between entities and objects
 • Created during provisioning of UA/Operator/Registry
Form Cxx

- Self-signed unverified claim
- Used to assert binding of HHIT/HI to a given entity (x)
 - Contains: HHIT, HI, Expiration Timestamp, Signature
 - 116 bytes in length
- Three specific entities:
 - Aircraft on Aircraft (Caa)
 - Operator on Operator (Coo)
 - Registry on Registry (Crr)
- Used in other forms
Form Cxy

- Asserts binding between two entities (x and y)
 - Generally ‘x’ is an entity attesting ‘y’s claim (or adding a relationship)
 - Contains: Cxx, Cyy, Timestamp, Expiration Timestamp, Signature
 - 304/608 bytes in length
- 3 specific implementations of this form:
 - Registry on Operator (Cro)
 - Operator on Aircraft (Coa)
 - Registry on Operator on Aircraft (Croa)
Certificate: Registry on Aircraft

• Special as it is used in authentication messages of Broadcast RID
 • Contains: HHIT of Registry, Caa, Expiration Timestamp, Signature
 • 200 bytes long
• Asserts the binding between a Registry and Aircraft
Provisioning: Operator

• Keypair generation
• HHIT derived from HI (public half of keypair)
 • Select Registry and use RRA/HDA to format valid HHIT
• Create Coo, send to Registry
• Registry perform verification check and adds HHIT/HI to DNS in the form of HIP RR
 • Verification check MUST include looking for HHIT collisions in current database of Registered HHITs
• Registry if successful, creates Cro and sends it back to Operator
• Registry if failed, sends error back asking to start over
Provisioning: Aircraft

• Keypair generation
• HHIT derived from HI (public half of keypair)
 • Registry selected and RRA/HDA used to format valid HHIT
• Create Caa, create Coa
• Send Caa, Coa to Registry
• Registry perform verification check and adds HHIT/HI to DNS in the form of HIP RR
 • Verification check MUST include looking for HHIT collisions in current database of Registered HHITs
• Registry if successful, creates Croa, Cra and sends them back
• Registry if failed, sends error back asking to start over
Implementation Progress
AX Enterprize Implementation

• ASTM F3411-19 for Broadcast RID

• Trustworthy Multipurpose Remote ID (TMRID)
 • Specific implementation of DRIP drafts at AX Enterprize
 • Supporting drafts
 • auth-00 (upgrading to 03 soon™)
 • identity-claims-00
 • uas-rid-06

• HHIT Registry
 • Identity-claims-00
 • API endpoint to provision aircraft and store HHIT/HIs in BIND9 zone dynamically

• Been flying and demoing since June 2020
Discussion

Questions, Comments, Concerns?

https://xkcd.com/364/
Backup Slides
Background & Problem

• ASTM F3411-19 Broadcast RID
 • Disjointed information delivery
 • Identity information of UA sent in Basic ID
 • Position information of UA sent in Location
 • But no ID in the Location Message
 • Authentication information of UA sent in Auth
 • All of these are sent and received separately (under Bluetooth 4.X)!
 • Fragmented data across Authentication Message pages

• Overall a lack of trust in Broadcast messages
 • Especially in Bluetooth 4.X
Bluetooth Background

• Why so small?
 • Bluetooth 4 legacy frames only give 25 bytes to play with (after Bluetooth headers)
 • 1 byte is for a main header in ASTM format that is always present – now only 24 bytes of data to work with per frame/page
ASTM Authentication

• Authentication Message
 • 5 pages long with a 109 byte max payload (17 + 23 * 4)
 • Designed to authenticate Message Packs (of up to 5 messages in Bluetooth 5.X frame)