

QoS in Information–Centric Networks Disaggregated Name Component Approach https://www.ietf.org/id/draft-anilj-icnrg-dnc-qos-icn-02.txt

Anil Jangam, Prakash Suthar, Milan Stolic

ICNRG Interim Meeting, IETF-107 Vancouver (virtual), Canada, April 20, 2020

Update Summary

- Discussion on network resources to be controlled
 - Link, Content Store, Forwarder Memory, Compute
- QoS treatment types and the network resource they influence
- Encoding of QoS marker in the hop-by-hop header
- Improved PIT state design for the QoS marker
- Improved QoS remarking scheme
- Editorial improvements

QoS Treatment and the Network Resources

+	++
Resource Type	Use in ICN
Link Capacity Content Store Capacity Forwarder Memory Compute Capacity	Packet priority queues Cache the content data chunks Pending Interest Table (PIT) storage CPU cycles for FIB, PIT, and CS lookups

+ QoS Treatment Type	Type of Resource and Influence
Reliable delivery	++ CPU - utilization to handle errors ++ Queues - for multi-path forwarding ++ Cache - utilization for short term
Low Latency delivery 	<pre>++ CPU - utilization to handle errors ++ Queues - for multi-path forwarding ++ Cache - replace cache entries ++ PIT - replace low priority PIT entries in saturated PIT</pre>
Mobility event	++ Cache - update cache at next forwarder
Bursty data	++ Queues - allocation of link capacity
Search data +	++ Queues - for multi-path forwarding ++ CPU - utilization to handle errors

ICN network resources to be managed

- QoS treatment types and the network resource they influence
- ++ indicates an increased resource use
- Trade-offs in modelling of QoS treatment
 - The number of traffic classes given the memory and processing capacity
 - The expressiveness of the QoS treatment to the protocol encoding and algorithmic implementation

QoS Marker Inside Hop-by-Hop Header

								1										2										3			
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+								-+-								-+-								-+-							+
						Т_	_Q(os_	_M2	ARF	KEI	R											1	by	γte	Э					
+.								-+-								-+-								-+-							+
1	3 k	bit	t (20	5 :	£i€	elo	1																							/
+-								-+-								-+-								-+-							+

- Bit-wise structure of the QoS Marker
- Lower 1 byte of the TLV is used to encode the QoS marker information

0 +-	1	2	3	4	5	6	7	1 8 -+-	9	0	1	2	3	4	5	6 -+-	7	2 8	9	0	1	2	3	4 _+-	5	6	7	3 8 	9	0	1	+
					Me	ess	aq	je]	'yı	pe											Me	es	sa	ge]	Lei	ng	th					
	Na	ame	2	CL1	J			- 1 -																								+
/	Ma	anc	lat	:01	сy	Qc	s	Ma	ar}	kei	I	CL1	7																			/
/	Op	pti	.or	na	LI	Key	7Ic	lRe	est	tri	LCt	:ic	on	TI	LV																	/
/	Op	oti	.or	na:	L (Con	nte	ent	:01	oj€	ect	:Ha	ast	nRe	est	tri	ict	ic.	on	TI	LV											/

- Interest Message with QoS Marker TLV
- QoS Marker encoding as a mandatory hop-by-hop header

QoS-Aware Forwarder/PIT Design

- QoS attribute is preserved and mapped as an interface property on which the Interest is received
- The interface data structure (in PIT) can be enhanced to save the QoS marker state

QoS-Aware Interest Aggregation in PIT

Int# Content name	Face Id	QoS Marker
Int1 /yt/vid1/ch1 Int1 /yt/vid1/ch1	face1 face1	qosmrk1 qosmrk2
+ Content Name Ir	nterface Id	QoS Marker
/yt/vid1/ch1 +>	face1 +	
	+ +	> /qosmrk2 > /qosmrk1

Case-1: A duplicate Interest with higher QoS markers is received on the *same* interface

Int# Content name Face Id QoS Marker
Intl /yt/vidl/ch1 face1 qosmrk1 Int2 /yt/vidl/ch1 face2 qosmrk2
++ Content Name Interface Id QoS Marker +
<pre>/yt/vidl/ch1 +> face1 +> /qosmrk1 face2 +> /qosmrk2</pre>

Case-2: A duplicate Interest with higher QoS markers is received on the *different* interface

Forwarder forwards the (duplicate) Interest with a higher QoS marking and updates the interface entry in PIT with the higher QoS marking **PIT aggregation is relaxed in this case** Only Interests with lower QoS marking are aggregated

QoS-Aware Data Delivery at PIT

• Data delivery at PIT does not change with the addition of the QoS marker

Content Name Interface Id QoS Marker
/yt/vidl/chl +> face1 + + + > /qosmrk2 +> /qosmrk1

Content Name	Interface Id QoS Marker
/yt/vid1/ch1 +	-> face1 +> /qosmrk1 face2 +> /qosmrk2

 In case-1, data packet is forwarded on downstream interface with the higher QoS marking recorded at the interface

 In case-2, data packet is forwarded on downstream interface with the actual QoS marking recorded at the interface

Summary & Future Work

- Propose concrete QoS markers and the definitions
- Discuss the QoS remarking and related protocol encoding

ılıılı cısco