
Reflexive Forwarding for CCNx and
NDN Protocols

draft-oran-icnrg-reflexive-forwarding-01

Dave Oran
Network Systems Research & Design

Dirk Kutscher
University of Applied Sciences Emden/Leer

Outline

• Motivations for multi-way interactions in ICN
• Problems with existing approaches.
• Overview of the Reflexive Forwarding design
• Use Cases for reflexive forwarding
• If time available:
– Implementation implications
– Operational considerations
– Security and Privacy considerations

Motivations for multi-way
Handshakes

• Remote Method Invocation (RMI, aka RPC)
– Fetch arguments
– Perform authorization
– Separate invocation from results return

• Phone-home for sensor/actuators
– Fetch from gateway rather than push from device
– Eliminate polling

• Peer State Synchronization
– 3-way handshakes needed to avoid hazards
– Complicated state machines for things needing

negotiation (e.g. SIP/SDP)

Problems with Existing approaches:
Pushing Data

• Interest messages get big
– Might need fragmentation (ugh!)
– Messes up assumption of small(ish)interests for congestion

control

• Need to sign interests for pushed data to be believed
– Bigger interest still
– Computational cost on producer to check signature

• Wasted bandwidth if computation started by pushed
data winds up abandoned

Problems with Existing approaches:
Independent Exchanges

• Consumer needs a routable name prefix
– Exposes consumer to unwanted traffic
– Puts burden on routing to propagate far enough to reach

producer
– In mobile environments, consumer becomes producer as well,

necessitating producer mobility machinery for pure consumer
• Consumer gets to choose the name to use to reach it by

– Opens up big hole to mount reflection attacks
• Correlating the two independent Interest/Data exchanges

can be error-prone
– Catastrophic if done wrong for key exchange
– Complicated state machine management (c.f. SIP & SDP)

Design Overview
• Utilize existing chain of PIT breadcrumbs established by an Interest

sent from consumer to producer
– This has enough state to allow not just a returning Data message, but

a Reflexive Interest to flow from producer to the unique consumer
who sent the original Interest

• Define a scheme for Reflexive Name Prefixes
– These can only be seen and understood by the already established

consumer/producer paring
• Provide a FIB enhancement to allow routing these back to the

consumer from the producer
• Couple the state of the original Interest/Data exchange with the

reflexive exchange(s)
– ensure state gets mapped correctly by both consumer and producer
– and unwound properly at the forwarders when the Data message

responding to the original Interest is sent back

Protocol Walk-through
Consumer ProducerForwarder

I1[P=P1,RNP=X1]

PIT
[P=P1]

RI[P=X1]

RFIB
[RNP=X1]

I1 State
[RNP=X1]

DR[P=X1]

PIT
[P=X1]

D1

Naming of Reflexive Interests
• New Name Component type for CCNx
– High-order component of any reflexive name, used to form

prefix
• Value is a 64-bit random number
– Entropy to uniquely identify the consumer for duration of

the exchange
– Different value for each outer exchange limits linkability

• Possible reflexive names that can be constructed:
– A single full name of object to fetch
– Prefix out of which producer/consumer name multiple

objects
– Full name of a FLIC Manifest

Forwarder Operation

• Create and manage short-lifetime FIB entries for
any reflexive name prefix from an incoming
Interest.

• Query these FIB entries (and no others) if an
Interest arrives whose first name component is of
type Reflexive Name Prefix

• FIB entry consumed along with original PIT entry
when the data message is returned by the
producer
– Could be removed lazily due to randomness

properties of the values

Typical Use Cases

• Remote Method Invocation
• RESTful Web Interactions
• Data Pull from sensors

Remote Method Invocation
(Pioneered by the RICE Remote Invocation on ICN work)

• RICE uses (an earlier version of) Reflexive
Interests for the following:
– Retrieve authentication/authorization information

from consumer
– Fetch arguments to method calls

• Completion can be either:
– Immediate through the returning Data message, or
– Deferred to a separate exchange to retrieve results

buy utilizing Thunks.
• Illustrated on following slide

RMI Example
Consumer Producer
I1 to invoke method/RPC

RI1 to fetch argument 1

Fetch arguments with Reflexive
Interests

RD1 with argument 1

D1 with Thunk

RI2 to fetch argument 2

RD2 with argument 2

Commit Resources, return Thunk

I2 with Thunk name to fetch results

Perform ComputationWait awhile…

D2 with Result

RESTful Web Interactions

• Only place RESTful request via the URI in the
initial Interest

• Get all the parameters, including AuthZ with
Reflexive Interests
– Cookies, Accept-foo headers, other HTTP goop

• Return results via regular Data messages

Data Pull from sensors

• Sensor only needs to act as consumer
• Wake up (on timer or event)
• ”Phone Home” to an application gateway or

REPO
• This provokes a Reflexive Interest/Data exchange

initiated from the gateway
• Data can either be:
– Packaged/stored by gateway as the authoritative

source
– Named, encapsulated and signed by sensor itself

Phone Home Data Pull Example
Sensor Consumer Gateway Producer

I1 Phone Home to gateway as producer

RI1 to fetch sensor Data

Form Reflexive Interest requesting
associated Data

RD1 return requested data

Optional £D1 to complete Handshake

Store Result as gateway-named
data, or Unwrap gloally named

Data to put in Repo

Wake up to Phone home

Implementation: Forwarders 1

• FIB - Changes from mostly read, to read-write
– Probably want a separate data structure – an RFIB
– Not hard because reflexive name component is easily

parsed and can be managed with simple 64-bit
hashing

• Interest Input – sharded PITs can be tricky
– Avoid cross-chard updates whebn handling reflexive

interests, or
– Force reflexive interests into same shard as original

interest

Implementation: Forwarders 2

• Interest Lifetime – inflated by possibly multiple
RTTs
– Could be hard for consumer to guess a good value

• Likely result is consumers grossly overestimating with bad
effects when Interests can experience undetected loss

– Propose to have forwarder account for this by
adjusting interest lifetime of original interest when
reflexive interests arrive

• Interest Aggregation – surprisingly not a problem
– Like with other Interest fields, forwarder MUST create

separate PIT entry if Interests carry different reflexive
name prefix values.

Implementation: Consumers
• Decide how to name data returned for an arriving reflexive

Interest
– Use a plain Data message if lifetime is just the enclosing

enchange
– Encapsulate a whole Data message with its own fullname if

global visibility/lifetime is desired
• Set other fields appropriately for data useful within the

enclosing exchange
– Recommended cache time zero or small
– Data expiry no longer than Interest lifetime of original interest

• Terminate unwanted reflexive Interest arrivals
– Send a Prohibited Interest Return error
– Forwarders with then wipe out the corresponding RFIB entry

Operational Considerations
• This is NOT backward-compatible

– Need an unbroken chain of forwarders that support reflexive
forwarding or things don’t work right

• Possible ways to overcome this
– Ignore the problem; let producers get a no route error if they try to

send a reflexive interest. This is ugly:
• how does producer figure out why no route
• How does he tell consumer that original exchange has failed for this reason –

may need a new interest return error
– Bump the CCNx/NDN protocol version on Interests carrying Reflexive

Name Prefix TLVs
• key off this to send back an error from a back-version forwarder
• Pretty big hammer!

– Create a capabilities-exchange protocol so forwarders know
capabilities of next hops
• Lots of work, but we probably need such a thing anyway!

Protocol encoding changes

• This is the simplest part.
– Just one new Name component type in registry
– One new Interest TLV to communicate the

reflexive name prefix to the forwarders and
producer

Security Considerations

• This scheme is partly motivated by trying to
improve both Security and Privacy:
– Avoids payloads in Interests that then have to be

signed, with associated vulnerability to
computational attacks on producers

– Avoids routable names for consumers so they
aren’t exposed to various crafted and flooding
attacks

– Avoids sending names crafted by consumersto
producers, which can open up reflection atacks

Some things on Security to Consider

• Collisions of Reflexive Name prefixes
– Avoid by using a crypto-quality PRNG

• Resource pressure on PIT and FIB
– Interests carrying Reflexive Name prefixes are more

expensive in both compute and memory (for the RFIB
entry)

• Privacy
– Same concerns about leaking information via names as all

other cases for CCNx or NDN
– Use cases may have message exchange and timing

patterns that allow easier linkability than independent
exchanges

That’s about it.
Questions & Comments?

Please review and comment on the
draft!!!

