
Background

• LAKE is about specifying a lightweight
authenticated key exchange protocol for
OSCORE (RFC 8613)

• The requirements for the lightweight
AKE are based on the conditions for
deploying OSCORE in constrained
environments (RFC 7228)

• This is not a new subject in the IETF
• On the agenda for ACE WG F2F meetings

at IETF 96–99, 101–103
• Extensively discussed in SecDispatch

2019, dedicated virtual interim March 5
• BoF@IETF105

Ephemeral Diffie-Hellman Over COSE
(EDHOC)

draft-ietf-lake-edhoc-03

LAKE, IETF, December 2020

Issue updates
since IETF 109

• Resumption (#25)

• Agreement/negotiation of parameters (#11, #23)
• New appendix in -03 that describes the parameters that need to

be agreed upon between Initiator and Responder has been
added. Currently some overlap between the new appendix and
the section “Communication/Negotiation of Protocol Features”.

• More ways to Identify certificates ('kid’, ‘c5u’, c5t’) (#32, #33)
• Verification of intended peer (#8)

• COSE WG have on ongoing discussion on how to identify a
certificate with ‘kid’.

• Request to add ‘c5u’, c5t’ to the EDHOC test vectors. The CBOR
certificate draft will add the subject private key to enable this.

• New text in -03 on why SIGMA require a “subject name” and
the kind of misbinding attacks this mitigates. This is a bit related
to ongoing discussion on the security of ‘x5u’ in COSE.

• Distinguish error message (#30)
• Text in -03 on how to distinguish error message bases on text

item.
• The issue has spawned several new discussions. Are there a

need to distinguish message_1 from message_3 except the
connection ID and 5-tuple? Is the error message something the
implementor define or should EDHOC define the error
messages?

2

Issue updates
since IETF 109

• Shall we replace HKDF with a more general extract-and-expand to
allow KMAC? (#19):
• Changed from HKDF-Extract and HKDF-Expand to general Extract-

and-Expand. For SHA-2, HKDF is used, for SHAKE, KMAC is used.
• (Note that this does change anything when SHA-256 is used. We

are also currently not planning on adding SHAKE cipher suites, but
SHAKE (like all other COSE algorithms) can be used with private
cipher suites.

• Shall we specify EDHOC in terms of KEM? (#17):
• We tried to implement EDHOC with the HPKE interfaces.
• The signature mode maps quite well to the unauthenticated HPKE

interfaces, with the difference that HPKE forces Extract-and-
Expand and EDHOC uses Extract and Expand as separate functions
and use the intermediate key to derive several keys with Expand.

• The Static Diffie-Hellman modes does not map well to HPKE as
HPKE do GenerateKeyPair() inside Encap(), while EDHOC relies on
doing GenerateKeyPair() outside of “Encap()” as an essential
optimization.

• The conclusion is therefore that this change should not be done as
it would change the key derivation quite much as well as
significantly increase message size.

• We should however consider to future proof EDHOC so it can be
updated with PQC KEMs. Unclear if “Static DH” authentication
with PQC KEMs provide any benefits compared to PQC signatures.

3

Register cipher suites
with high security (#35)
• Register cipher suites with high security (#35)

— Several independent requests to include cipher suites compatible
with CNSA. One request to add a general non-constrained cipher
suite.

— We have added the following two registered cipher suites to -03. The
first one is compatible with CNSA and the second uses the algorithms
popular on the web.

— A256GCM, SHA-384, P-384, ES384, P-384, A256GCM, SHA-384
— A128GCM, SHA-256, X25519, ES256, P-256, A128GCM, SHA-256

— We have also added additional text describing that EDHOC can be
used with all COSE algorithms/curves by using the private cipher
suites.

4

Open Issues

• Rekeying OSCORE AEAD (#20)

• ID encryption in message_2 (#34)

• Delivery receipt for message_3 / key confirmation

(#10, #18)

• TEE Assumptions (#5)

• Forward and backward secrecy (#24)

• SHA-512, signature algorithms, and MTI cipher suite

(#2, #21, #22)

5

Rekeying OSCORE AEAD (#20)
— Shall we solve rekeying of AEAD within EDHOC, or let the data protection protocol, e.g.

OSCORE, handle it more efficiently? (#20)

— CFRG are working on a document specifying equations to calculate AEAD limits for the
number of encryption operations q and the number of forgery attempts v. TLS, DTLS, and
QUIC has adopted strict limits based on the same equations.
https://tools.ietf.org/html/draft-irtf-cfrg-aead-limits

— Limits are based on a target probability for forgery of a single packet or distinguishability
from a random string. Packet length (plaintext + additional data) also affects the limits.
Having strict limits is not a problem if re-keying is easy.

— EDHOC use each AEAD key only once, but it might be a problem for OSCORE. Re-keying can
be done in EDHOC or OSCORE. DTLS 1.3 sets the limits for CCM to q = 223 and v = 223.5 and
states that CCM_8 MUST NOT used in DTLS without additional safeguards against forgery.

— Should the IETF IoT community discuss reasonable limits for q and v for CCM_8?
— Overall, does this sound like something better to do in (OS)CORE?

6

https://tools.ietf.org/html/draft-irtf-cfrg-aead-limits

Rekeying OSCORE AEAD (#20)
— Shall we solve rekeying of AEAD within EDHOC, or let the data protection protocol, e.g.

OSCORE, handle it more efficiently? (#20)

— CORE WG discussed rekeying and forward secrecy at IETF 109. The discussion has continued after IETF
109. Preliminary conclusions are that
— New CORE draft will specify OSCORE AEAD counters
— OSCORE RFC 8613 appendix B.2 (or an update) is needed for lightweight rekeying in OSCORE.

Appendix B.2 exchange authenticated nonces and switch keys.
— Good if lightweight forward secrecy (i.e., a hash-chain) can be done in EDHOC to avoid changes in

OSCORE. EDHOC keys might be stored in TEE.

— Lightweight FS can be achieved by “hashing” the key PRK_4x3m with the EDHOC-Exporter. The nonce
make sure that the “hash-chain” does not have short cycles. The following function has been made in -03

EHDOC-Exporter-FS(nonce):
PRK_4x3m = Extract(["TH_4", nonce], PRK_4x3m)

— FFS where the nonce comes from (EDHOC, OSCORE) and if it is a counter, a random number, or
counter+random number.

— The use of OSCORE appendix B.2 together with the EHDOC-Exporter-FS function align on a high level
with the original mechanism proposed by Karthik
https://mailarchive.ietf.org/arch/msg/lake/vkJunXEQZ33HP9YpNByQesEW7l8/

7

https://mailarchive.ietf.org/arch/msg/lake/vkJunXEQZ33HP9YpNByQesEW7l8/

ID encryption in message_2 (#34)
• How to do encryption without integrity in message_2 (#34)

— As the Responder sends its identity to an unauthenticated part, there
is no need to have IND-CCA encryption against active attackers.
IND-CPA encryption is enough in this case. (everything is integrity
protected by the inner MAC).

1. The current specification generates a long encryption key and
perform XOR cipher.

2. Remove the tag from AEAD ciphertext. Only works when AEAD has a
well-defined tag.

3. Associate a IND-CPA encryption alg with each AEAD. Requires table.
(AES-CCM, AES-GCM -> AES-CTR, ChaCha20-Poly1305 -> ChaCha20)

• 1), 2), or 3)?

8

ID encryption in message_2 (#34)
• How to do encryption without integrity in message_2 (#34)

— The agreement from IETF 109 was to specify new modes of AES and
ChaCha20 for message_2 similar to TLS 1.3.

— After trying to implement this we think it is a bad idea as it makes things quite
complicated for developers and complicated the specification. In EDHOC it is
not enough with AES-ECB and the ChaCha20 block cipher as in TLS 1.3.
EDHOC would need AES-CTR and the ChaCha20 stream cipher.

— This makes the specification a bit complicated and it makes it a bit
complicated for developers with a COSE implementation as they must dig out
AES and ChaCha20 and implement stream cipher modes.

— We would like to bring this up for discussion again. We think both 1 and 2)
would be better choices with low complexity for developers.

1. Generate keystream with HDKF-Expand.
2. Encrypt like message_3 and remove the tag (if there is a well-defined tag).

9

Delivery receipt for message_3 / key confirmation (#10, #18)

• Optional message_4 for key confirmation (#18)
• Injective agreement issue (was: G_IY in session key material) (#10)

— The Initiator would typically want a delivery receipt for message_3 / explicit key confirmation of PRK_4x3m,
otherwise the Initiator does not know if the Responder has received and accepted message_3.

— To get explicit key confirmation the Initiator needs to receive a MAC from the Responder. The MAC can be an OSCORE
Response, OSCORE Request, or any other MAC.

— Sending message_3 in OSCORE as specified in draft-palombini-core-oscore-edhoc and requiring a response solves the
problem for use cases where the EDHOC Initiator is OSCORE client. When the EDHOC Initiator is OSCORE server, a first
OSCORE request is needed to provide key confirmation.

— For use cases where relying on OSCORE or any other messages with a MAC is not suitable, it has been suggested to
add an optional fourth EDHOC message_4 with a MAC. Concern that message_4 increases overhead and complexity.
An optional fourth message could for example be specified in an appendix. Initiator could indicate whether the
Responder must send a message_4 (and fail if this is not received)

— Introduce optional fourth EDHOC message_4 or only rely on OSCORE?
— Add recommendation that client send OSCORE request in parallel with or soon after message_3?

10

TEE Assumptions (#5)
• Which information and cryptographic operations can be

expected to be generated/stored/performed inside a TEE? (#5)

• Long-term public authentication keys?
• Ephemeral public keys?
• PRK_4x3m and EDHOC-Exporter?
• EDHOC protocol?
• OSCORE protocol?

• This would be useful to write recommendation about. Current
draft recommends “as much as possible…”

• It is also an input to protocol design: ”Compromise of key X does
not lead to compromise of key Y” does not matter practically if X
and Y are stored together.

• Assume/recommend that all EDOC keys (authentication keys,
ephemeral keys, PRK_4x3m) are kept in TEE?

11

Forward and backward secrecy (#24)

— Forward and backward secrecy (#24)
— Related to AEAD rekeying (#20) and resumption (#25) and TEE (#5)

— Is there a need for a new lightweight protocol component that provides both
forward and backward secrecy? Or is it sufficient to rerun EDHOC periodically
and maybe PSK-based FS in OSCORE with a chain of hashed session keys or
by exchanging nonces or as part of a rekeying solution?

— Goal is that an attacker compromising the session state used to protect
message with sequence number s shall not be able to decrypt/forge
messages with sequence number s - r and s + r, where s is a security
parameter (limits for time can be achieved with a solution for sequence
numbers).

— Rerunning EDHOC every for every time the OSCORE sequence number is
congruent with 0 mod r achieves both forward and backward secrecy.

12

Forward and backward secrecy (#24)
— Some solutions only protect against attackers that are passive after the compromise.

Other solutions protect also against active attackers. Might also be differences
depending on for which messages the attacker eavesdropped on/was active.

— One potential solution would be to add cryptographic ratcheting similar to the Signal
protocol. The shared secret could be updated every rth message. See figure from Signal
on the right →

— Several comments that we should avoid adding complexity and code size unless
necessary. The size of added code to firmware updates, should be compared to the
message sizes or rerunning EDHOC.

— Adding any form of key update to EDHOC and OSCORE adds severe problems with
synchronization. A solution should self-synchronizing in the way that the receiver knows
from the received OSCORE message which key to use.

— Sufficient to optionally rerun EDHOC periodically and discuss/specify lightweight
ways to get FS as part of rekeying discussion in (OS)CORE?

— Recommendation in EDHOC/OSCORE to have policies for rerunning EDHOC based on
time/number of OSCORE messages?

13

SHA-512, signature algorithms, and MTI cipher suite
(#2, #21, #22)

— Cipher suites requiring multiple SHA (#2)
— Use of SHA-512 in constrained IoT (#21)
— Mandatory to implement cipher suite (#22)

— Many comments regarding device support, performance, and security pointing in different directions..

— Device support: ECDSA, SHA-256, P-256 is the current default choice and has very wide support. SHA-
512 is not supported on many IoT devices and the question is if it ever will. Currently SHA-256 have wide
support and is often HW accelerated. Adding also SHA-512 requires more code storage. If SHA-256 gets
replaces it would likely be with SHAKE128 or some future XOF emerging from the NIST lightweight
standardization protect (e.g. Gimli) that can do both AEAD and hashing.

14

SHA-512, signature algorithms, and MTI cipher suite
(#2, #21, #22)
— Performance: Having high performance ECC algorithms are important to reduce latency. While some

earlier benchmarks indicated huge performance benefits with Curve25519 and Ed25519 compared to
P-256 ECDH and ECDSA, a large part of the difference seem to have been due to unoptimized P-256
implementations. On some platforms Ed25519 seems to be significantly faster, while they seem to
have equal performance on other platforms.

— http://essay.utwente.nl/75354/1/DNSSEC%20curves.pdf
— https://bearssl.org/speed.html

— Security: We have received several comments that people would like some of the security
improvements in Ed25519 compared to ECDSA with P-256. The Minerva attack last year used ECDSA
side-channels to do practical recovery of the long-term private key. Several academic papers have also
shown that deterministic ECC signatures like Deterministic ECDSA or Ed25519 are vulnerable to side-
channel attacks

— https://minerva.crocs.fi.muni.cz/
— https://tools.ietf.org/html/draft-mattsson-cfrg-det-sigs-with-noise

15

http://essay.utwente.nl/75354/1/DNSSEC%20curves.pdf
https://bearssl.org/speed.html
https://minerva.crocs.fi.muni.cz/
https://tools.ietf.org/html/draft-mattsson-cfrg-det-sigs-with-noise

SHA-512, signature algorithms, and MTI cipher suite
(#2, #21, #22)

— Mandatory-to-implement (MTI) cipher suite:

— No ideal MTI ECC algorithms. Concern with support for Ed25519 in legacy low end
microcontrollers. Concern with performance and security of ECDSA and P-256. Ed25519 with
SHA-256 would be an improvement for many. ECDSA, SHA-256, P-256 might be the only thing
that can currently be mandated.

— COSE (RFC 8152): “Applications need to determine the set of security algorithms that are to
be used. When selecting the algorithms to be used as the mandatory-to-implement set …”

— Recommend that implementations provide algorithms based on both P-256 and
Curve25519 if they can, at least one of them?

— Do like COSE and let application determine MTI?

16

SHA-512, signature algorithms, and MTI cipher suite
(#2, #21, #22)
— What is the future IoT signature algorithm?

— ECDSA/Schnorr/EdDSA/qDSA
— Weierstrass/Edwards/Montgomery
— SHA-256/SHAKE128/Gimli
— Deterministic/Random/Deterministic + Random

— ECDSA with SHA-256 + P-256 is the current default choice that has very wide support. Several companies
has commented that they want to move away from ECDSA and P-256 for security and performance
reasons.

— Ed25519 mandates use of SHA-512 and mandates deterministic nonce generation making it quite
unsuitable for IoT. ECDSA25519 solves some of these problems but is still ECDSA.
https://tools.ietf.org/html/draft-ietf-lwig-curve-representations-13
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf

— Encourage IETF work on Schorr/EdDSA/qDSA suitable for future IoT?
17

https://tools.ietf.org/html/draft-ietf-lwig-curve-representations-13
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf

REVIEWS

IMPLEMENTATIONS

INTEROP

CONTINUE ISSUE
DISCUSSION ON
GITHUB

MORE REVIEWS

PARTICIPATE
IN INTEROP

