LPWAN WG

WG Chairs:
Alexander Pelov <a@ ackl.io>
Pascal Thubert <pthubert@cisco.com>

AD: Eric Vyncke
<evyncke@cisco.com>
Note Well

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF "contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

• By participating in the IETF, you agree to follow IETF processes and policies.
• If you are aware that any IETF contribution is covered by patents or patent applications that are owned or controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.
• As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic records of meetings may be made public.
• Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
• As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or ADs:

- BCP 9 (Internet Standards Process)
- BCP 25 (Working Group processes)
- BCP 25 (Anti-Harassment Procedures)
- BCP 54 (Code of Conduct)
- BCP 78 (Copyright)
- BCP 79 (Patents, Participation)

https://www.ietf.org/privacy-policy/ (Privacy Policy)
Reminder:

Minutes are taken *
This meeting might be recorded **
Presence is logged ***

* Scribe; please contribute online to the minutes at: https://etherpad.tools.ietf.org/p/lpwan
** Recordings and Minutes are public and may be subject to discovery in the event of litigation.
*** From the Webex login
Agenda bashing

[16:05] Administrivia [5min]
 o Note-Well, Scribes, Agenda Bashing
 o WG Status
[16:10] SCHC-over-LoRaWAN Update [30min]
[16:40] SCHC-over-Sigfox Update [10min]
[16:50] AOB [QS]
WG Status

Milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 2021</td>
<td>Produce a Standards Track document to enable operations, administration and maintenance (OAM) to the LPWAN device, including support for delayed or proxied liveness verification (Ping)</td>
</tr>
<tr>
<td>Feb 2021</td>
<td>Produce a Standards Track document to define the generic data models to formalize the compression and fragmentation contexts for LPWANs</td>
</tr>
<tr>
<td>Dec 2020</td>
<td>Produce Standard Track documents to apply SCHC IPv6/UDP over the baseline technologies</td>
</tr>
<tr>
<td>May 2020</td>
<td>Perform SCHC Maintenance, including enabling SCHC mechanisms for Upper layer Protocols</td>
</tr>
</tbody>
</table>
Interims

Every two weeks, starting May 19th
16h-17h CEST

IETF 108 will be online

> Interims and online meetings will be the way ahead for the foreseeable future (IETF109…)

Interim Meeting, May 19th, 2020
Documents advancement

<table>
<thead>
<tr>
<th>Active Internet-Drafts (5 hits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-lpwan-coap-static-context-hc-13</td>
</tr>
<tr>
<td>LPWAN Static Context Header Compression (SCHC) for CoAP</td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-lorawan-07</td>
</tr>
<tr>
<td>Static Context Header Compression (SCHC) over LoRaWAN</td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-nbiot-02</td>
</tr>
<tr>
<td>SCHC over NB-IoT</td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-sigfox-02</td>
</tr>
<tr>
<td>SCHC over Sigfox LPWAN</td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-yang-data-model-02</td>
</tr>
<tr>
<td>Data Model for Static Context Header Compression (SCHC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Internet-Drafts (3 hits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-barthel-lpwan-oam-schc-01</td>
</tr>
<tr>
<td>OAM for LPWAN using Static Context Header Compression (SCHC)</td>
</tr>
<tr>
<td>draft-thubert-lpwan-command-reg-01</td>
</tr>
<tr>
<td>Command and Control Registry for SCHC</td>
</tr>
<tr>
<td>draft-thubert-lpwan-schc-over-ppp-00</td>
</tr>
<tr>
<td>SCHC over PPP</td>
</tr>
</tbody>
</table>
Documents advancement

Active Internet-Drafts (5 hits)

<table>
<thead>
<tr>
<th>Draft ID</th>
<th>Title</th>
<th>Submission Date</th>
<th>Pages</th>
<th>Status</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-lpwan-coap-static-context-hc-13</td>
<td>LPWAN Static Context Header Compression (SCHC) for CoAP</td>
<td>2020-03-05</td>
<td>29</td>
<td>IESG Evaluation: Revised I-D Needed for 68 days</td>
<td>Pascal Thubert</td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-lorawan-07</td>
<td>Static Context Header Compression (SCHC) over LoRaWAN</td>
<td>2020-04-17</td>
<td>25</td>
<td>I-D Exists</td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-nbiot-02</td>
<td>SCHC over NB-IoT</td>
<td>2020-05-17</td>
<td>25</td>
<td>I-D Exists</td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-over-sigfox-02</td>
<td>SCHC over Sigfox LPWAN</td>
<td>2020-05-16</td>
<td>15</td>
<td>I-D Exists</td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lpwan-schc-yang-data-model-02</td>
<td>Data Model for Static Context Header Compression (SCHC)</td>
<td>2020-02-28</td>
<td>34</td>
<td>I-D Exists</td>
<td>Suresh Krishnan</td>
</tr>
</tbody>
</table>

Related Internet-Drafts (3 hits)

<table>
<thead>
<tr>
<th>Draft ID</th>
<th>Title</th>
<th>Submission Date</th>
<th>Pages</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-bartel-lpwan-oam-schc-01</td>
<td>OAM for LPWAN using Static Context Header Compression (SCHC)</td>
<td>2020-03-09</td>
<td>14</td>
<td>I-D Exists</td>
</tr>
<tr>
<td>draft-thieme-schc-over-ethernet</td>
<td>Command Channel over Ethernet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>draft-thieme-schc-over-ethernet</td>
<td>SCHC over Ethernet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charter item:

Produce a Standards Track document to enable operations, administration and maintenance (OAM) to the LPWAN device, including support for delayed or proxied liveness verification (Ping).
draft-ietf-lpwan-schc-over-lorawan

Editors:
Ivaylo Petrov (ivaylo@ackl.io)
Olivier Gimenez (ogimenez@semtech.com)

Interim meeting, May 19th, 2020
Upcoming changes in draft-008

- Add uplink All-1 example with last tile
- Fixed IID example
- Use RFC8376 terminology
- List all bitmap possibilities in SCHC ACK example
- Add payload to downlink All-1
- Fixed some nits
Use RFC8376 generic terminology or LoRaWAN?

<table>
<thead>
<tr>
<th>Function/Technology</th>
<th>LoRaWAN</th>
<th>NB-IoT</th>
<th>Sigfox</th>
<th>Wi-SUN</th>
<th>IETF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor, Actuator, device, object</td>
<td>End Device</td>
<td>User Equipment</td>
<td>End Point</td>
<td>Leaf Node</td>
<td>Device (DEV)</td>
</tr>
<tr>
<td>Transceiver, Antenna</td>
<td>Gateway</td>
<td>Evolved Node B</td>
<td>Base Station</td>
<td>Router Node</td>
<td>Radio Gateway</td>
</tr>
<tr>
<td>Server</td>
<td>Network Server</td>
<td>PDN GW/ SCEF*</td>
<td>Service Center</td>
<td>Border Router</td>
<td>Network Gateway (NGW)</td>
</tr>
<tr>
<td>Security Server</td>
<td>Join Server</td>
<td>Home Subscriber Server</td>
<td>Registration Authority Server</td>
<td>Authentic. Server</td>
<td>LoWAN-AAA Server</td>
</tr>
<tr>
<td>Application Server</td>
<td>Application Server</td>
<td>Network Application Server</td>
<td>Application Application (App)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DTAG

A LoRaWAN device cannot interleave several fragmented SCHC datagrams on the same FPort. This field is not used and its size is 0.

Note: The device can still have several parallel fragmentation sessions with one or more SCHC gateway(s) thanks to distinct sets of FPorts, cf Section 5.2

• **Question**: Should we write that there is implicit DTAG?
Retransmission timer

Retransmission timer: LoRaWAN end-devices MUST NOT implement a "retransmission timer", this changes the specification of [RFC8724], see Section 5.6.3.5. It must transmit MAX_ACK_REQUESTS time the SCHC ACK REQ at it own timing; i.e. the periodicity between retransmission of SCHC ACK REQs is device specific and can vary depending on other application uplinks and regulations.

Ack-on-Error (uplink): Conflicts with duty cycle, especially if it implements non SCHC traffic.

Ack-Always (downlink): Retransmission timer cannot be used with LoRaWAN class A device as the RX window is opened by the device
All-1 SCHC Fragment and SCHC Sender-Abort
ALL-0 SCHC Fragment and SCHC ACK REQ

RFC8724 All-1: *This condition is also met if the SCHC Fragment Header is a multiple of L2 Words*

RFC8724 All-0: *This condition is met if the RCS is present and is at least the size of an L2 Word*

Question: Those conditions are met in LoRaWAN profile. Should we explicitly write it?
RFC8724 – Appendix D

RFC8724 The profile may define a delay to be added after each SCHC message transmission for compliance with local regulations or other constraints imposed by the applications.

Question: Not used in LoRaWAN profile. Should we explicitly say it?
Thank you for your attention
draft-ietf-lpwan-schc-over-sigfox-02

&

PySCHC Implementation

Juan Carlos Zúñiga (Sigfox), Carles Gómez (U Catalunya), Laurent Toutain (IMT-Atlantique),

Diego Wistuba, Sandra Céspedes, Rodrigo Muñoz (U Chile)
Draft Status

• Last draft updates (rev 02)
 • SCHC parameters
 • Enhanced text descriptions
 • UL callback/API details
 • Structure of document
 • Terminology
 • References
UL Callback/API

• Draft now includes availability and SCHC usage of data and metadata from UL Device transmissions:
 • Device ID
 • Message Sequence Number
 • Message Payload
 • Message Timestamp
 • Device Geolocation
 • RSSI
 • Device Temperature
 • Device Battery Voltage
All-1 + Message Sequence usage

• SCHC receiver relying on Sigfox Sequence Number to detect potential missing fragments before receiving the All-1 fragment

• SCHC ACK Bitmap constructed based on information from received fragments + Sequence Number
PySCHC Network Architecture

• PySCHC SW
• Pycom
• Sigfox Network
• Google Cloud *

* https://cloud.google.com/community/tutorials/sigfox-gw
PySCHC SW Architecture

• SCHC Fragmenter: **ACK-on-Error**

• SCHC Profile: **Sigfox**

• Dev platform: **Pycom (LoPy4)**

• App platform: **Google Cloud**
Next Steps

• Keep advancing on PySCHC implementation to fine-tune parameters:
 • Timers
 • Rules
 • DTag

• Interoperability tests between PySCHC and other implementations should also help fine-tuning protocol parameters
 • Planned for upcoming IETF Hackathons:
 • IETF Vancouver,
 • IETF Madrid
 • IETF Bangkok?
AOB ?