In-situ Flow Information Telemetry (IFIT) Node Capability Advertisement

draft-wang-lsr-ifit-node-capability-advertisement-00

Yali Wang, Tianran Zhou, Min Liu @Huawei
Ran Pang @China Unicom

(This document now replaces draft-liu-lsr-isis-ifit-node-capability, draft-wang-idr-bgp-ls-ifit-node-capability, and draft-wang-lsr-ospf-ifit-node-capability.)
Background

- **In-situ Flow Information Telemetry (IFIT)** provides a high-level reference framework and a reflection-loop working solution for network data-plane telemetry [I-D.song-opsawg-ifit-framework].
 - A family of on-path telemetry techniques emerge, including In-situ OAM (IOAM), Postcard-Based Telemetry (PBT), IOAM Direct Export (DEX), and Enhanced Alternate Marking (EAM).

- **IFIT is a solution focusing on network domains.**
 - The part of the network which employs IFIT is referred to as the IFIT domain. An IFIT domain may cross multiple network domains.
 - These on-path telemetry techniques may be selectively or partially implemented in different devices within a single domain or cross multiple domains for various use cases of application-aware network operations.

- So that in order to dynamically enable IFIT functionality in a network domain, it is necessary to advertise/collect the IFIT node capability information, i.e. IFIT option types supported in each device within different IFIT domain.

- **This document extends OSPF, IS-IS, and BGP-LS for IFIT node capability advertisement**
 - Entities (e.g. centralized controllers) that can use this information to determine whether a particular IFIT functionality can be enabled in a given IFIT domain.
 - The advertisement presents no risk to IGP and BGP routing.
Application

• To avoid the leak of IFIT-specific header and metadata:
 – As any packet with IFIT-specific header and metadata must not leak out from the IFIT domain, the IFIT decapsulating node must be able to capture packets and remove the IFIT-specific header and metadata before forwarding them out of the IFIT domain.

• Flexible and Automatic Deployment Of IFIT Option Types:
 – Different IFIT Option Types have different encapsulation formats and different processing procedures when packets travers to encapsulating, transit, and decapsulating nodes.
 – For example,
 • IOAM Trace Option-Types
 - IOAM tracing data is expected to be collected at every IOAM transit node that a packet traverses to ensure visibility into the entire path a packet takes within an IOAM-domain.
 - If not all nodes within a domain are IOAM Trace Option-Type capable, IOAM-Data-Fields will only be changed on those nodes which are IOAM Trace Option-Type capable and IOAM tracing information will only be collected by those IOAM-capable nodes.
 • IOAM DEX Option-Type
 - The required IOAM data is expected to be exported at every transit node that process a packet with the DEX option.
IFIT Node Capability Information

• IFIT-Option-Types fall into five categories: IOAM Pre-allocated and Incremental Trace Option-Types, IOAM E2E Option-Type [I-D.ietf-ippm-ioam-data], IOAM DEX Option-Type [I-D.ietf-ippm-ioam-direct-export], EAM Option-Type [I-D.zhou-ippm-enhanced-alternate-marking].

• A subset or all the IFIT-Option-Types and their corresponding IFIT-Data-Fields can be associated to an IFIT-Namespace.
 - The Namespace identifiers allow devices which are IFIT capable to determine whether IFIT-Option-Types need to be processed.

• IFIT-Node-Capability information: One or more pairs of a 2-octet Namespace-ID and 16 bit Option-Type enabled Flag

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+------------------------------------------+
| Namespace-ID_1   | Option-Type enabled Flag_1 |
+------------------------------------------+
| Namespace-ID_2   | Option-Type enabled Flag_2 |
+------------------------------------------+
| ...             | ...                        |
+------------------------------------------+
```

- Namespace-ID: A 16-bit identifier, defined in [I-D.ietf-ippm-ioam-data].
- Option-Type enabled Flag: A 16-bit field, defined as:

 | p | i | d | e | m | Reserved |
 +--+
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

- p-Flag: IOAM Pre-allocated Trace Option Type-enabled flag.
- i-Flag: IOAM Incremental Trace Option Type-enabled flag.
- d-Flag: IOAM DEX Option Type-enabled flag.
- e-Flag: IOAM E2E Option Type-enabled flag.
- m-Flag: Enhanced Alternative Marking enabled flag.
- Reserved: Must be set to zero upon transmission and ignored upon receipt.
Advertisement of IFIT Node Capability

• A new IFIT Node Capability TLV within the body of the OSPF RI Opaque LSA to carry the IFIT node capabilities of the router originating the RI LSA.
 - IFIT-Node-Capability: a multiple of 4 octets fields which carry the IFIT node capabilities information.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------------------------------------------------------+
| Type | Length |
+---------------------------------------------------------------+
| IFIT-Node-Capability |
+---------------------------------------------------------------+
```

• A new IFIT Node Capability sub-TLV is extended to IS-IS Router CAPABILITY TLV.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------------------------------------------------------+
| Type | Length |
+---------------------------------------------------------------+
| IFIT-Node-Capability |
+---------------------------------------------------------------+
```

• The IFIT Node-Capability TLV is defined as a new Node Attribute TLV that is encoded in the BGP-LS attribute with Node NLRIs.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------------------------------------------------------+
| Type | Length |
+---------------------------------------------------------------+
| IFIT-Node-Capability |
+---------------------------------------------------------------+
Next Steps

• Comments are welcome
• Refine the document accordingly

Thank You!