
IS-IS Flooding Speed advertisement

 draft-decraene-lsr-isis-flooding-speed-03

Bruno Decraene (Orange)

Chris Bowers (Juniper)

Jayesh J (Juniper)

Tony Li (Arista)

Gunter Van de Velde (Nokia)

1

Problem statement
Distributed SPF requires that all nodes have the same LSDB.

 Node 1 --------- Node 2

 LSP1, LSP2, LSP3 LSP1

Flooding is done between two adjacent nodes.

Need to sync LSDB between those two neighbors as fast as possible.

We seemed to have reached consensus on this.
(Previously: some discussion about flooding needed to be done "at the
same rate" network wide/on all adjacencies. This is behind us.)

2

Two main uses cases

Node Failure:

• 2 to 50 LSPs to flood

• In less than 100ms for fast convergence (sub second)
• Ideally “0” ms for 2 LSPs (fast removal of a PE’s loopback)

Partition repair:

• 1000 - 5000 LSPs to flood

• In a few seconds (1 – 10 seconds)

3

Lab testing existing behavior

• Idealistic test conditions

• Major implementation

• High end router

• Same implementation on both the receiver and the
sender: no interop/interwork/assumptions issues

• IS-IS only (e.g. no BGP)

• 0ms RTT link

• Single IGP adjacency: receiver deals with a single
sender

4

Some outcome of tests
• Default parameters

• Slow LSDB synchronization
• as per user manual; below 500kbit/s)

• No specific issue

• Tuned parameters
• Faster LSDB synchronization (x10)

• Good but still lower than my 200€ smartphone

• Too aggressive parameters
• Receiver is overwhelmed, even in those idealistic conditions

• Sender needs to send some LSP multiple times

• Lower goodput, higher load on both nodes

• Three time slower, for a small change in parameters

• Lack of flow control

#LSP sent 6179

Duration (s) 15,11277

#LSP/second 408,8595

avg LSP inter delay

(ms) 2,445828

#LSP retransmitted 2156

#LSP sent 4023

Duration 5,055838

#LSP/second 795,7138

avg LSP inter delay

(ms) 1,256733

#LSP retransmitted 0

#LSP sent 4024

Duration 150,1919

#LSP/second 26,79239

avg inter-LSP delay

(ms) 37,32403

#LSP lost 1

5

Transport layer tool box

• Flow control

• Congestion control

• Loss detection & recovery

6

Flow control

• Prevents the sender from overwhelming

the receiver

• avoid losses & retransmissions

• TCP uses a ‘receive window’ advertised

from the receiver to the sender.

• Draft proposes the same mechanism

• Unit in number of LSPs (rather than bytes)

7

Flow control – receive window

• May be static
• Dynamic flow control achieved by acknowledging

the reception of LSP as per today

• Well known bandwidth delay limitation
• Higher delay means lower throughput or larger window

• Benefits in sending xSNP faster.

• Which value to pick
• Just like TCP? (use the same value)

• Platform dependent value?

• Platform independent value like today (worst case)?

8

Flow control – receive window

• May be dynamic based on load

• Advertise a reasonable value at startup

• Increase/decrease depending on receiver

load

• E.g. waiting for I/O: increase window

• E.g. can’t exhaust incoming queue: decrease

window

9

Flow control – receive window

• May be dynamic based on monitoring of

relevant (averaged) hardware resources

• Buffer space (most likely on the forwarding

engine)

• IS-IS CPU

10

Congestion control

• Prevents the sender from overwhelming

the network

• P2P high speed link is not the issue

• Forwarding resources within the router from

the ingress link to the control plane

• platform dependent source of congestion & packet

loss

11

Congestion control

• Does not necessarily require standardization, hence
none in current version of the draft.

• Next version could propose one based on existing
AIMD algo (used in TCP, SCTP, some DCCP modes).
• AIMD: Additive Increase/ Multiplicative Decrease

• start: congestion window := receive window /2

• linear increase with proportional control
• N LSP ack’ed  increase the congestion window by N

• exponential reduction
• LSP lost  congestion window divided by 2

12

LSP loss and retransmission

• Existing mechanism in IS-IS

• Faster loss detection would improve
feedback loop delay
• Currently > minimumLSPTransmissionInterval

(5s)

• Draft proposes that receiver advertise a
smaller value
• Hence commit in fast acknoledgement

• Allowing faster detection of LSP loss

13

In summary

• TCP like algorithm
• ‘Receive window’ for flow control

• Small traffic if blocked

• ‘Additive Increase/ Multiplicative Decrease’ for congestion
control

• Using IS-IS encoding and behaviors
• Existing ack, loss detection and re-transmission

• Adding one TLV to advertise parameters
• Receive Window

• Amount of “small traffic” if blocked

• How fast I will ack LSP

 14

Draft changes

• Flooding Parameters TLV may be advertised in both
xSNP and Hello

• Encoding:
• Use of a sub-TLV for each parameter

• 32 bits values, increased granularity

• New sections:
• faster acknowledgment of LSPs.

• faster retransmission of lost LSPs
• New sub-TLV to signal how fast the receiver will ack the LSPs

• Terminology changes, editorial

15

Next steps

• Many thanks for the significant

constructive discussions and feedbacks.

• More are welcomed

• Update the draft:

• Introduction on transmission layer toolbox

• Congestion control algorithm

16

