draft-ginsberg-lsr-isis-flooding-scale

Les Ginsberg, Cisco Peter Psenak , Cisco Acee Lindem, Cisco Tony Przygienda, Juniper

107th IETF, April 2019

Changes Since V1

Revised example algorithm Added discussion of Ack behavior (PSNP Rate) Added Deployment Considerations

Example Flow Control Algo		
MaxLSPTx:	Maximum # LSPs transmitted/second/interface	
MinLSPTx:	Minimum # LSPs which may be transmitted/second/interface	
UackSafe:	Safe level of unacknowledged LSP/Interface expressed as a percentage	
	of CurrentLSPTxMax(1-99)	
UpdateBackoff:	Percent backoff when congestion occurs (1-99)	
UpdateIncrement:	Percent increment when congestion has cleared (1-99)	
	Current maximum number of LSPs which can be transmitted/second Current number of unacknowledged LSPs already transmitted	
if (CurrentUackLSP > (CurrentLSPTxMax * UackSafe)) {		
CurrentLSPTxMax = max(MinLSPTx, (CurrentLSPMaxTx*UpdateBackoff))		
} else { // CurrentUackLSP is at a safe level		
CurrentLSPTxMax = min(MaxLSPTx, CurrentLSPTxMax*((100 + UpdateIncrement)/100))		
}		

Configurable vs Calculated

Sending PSNPs

Tradeoff between acking immediately and delaying so as to minimize the number of PSNPs sent

ISO10589:

partialSNPInterval - This is the amount of time between periodic action for transmission of Partial Sequence Number PDUs. It shall be less than minimumLSPTransmission-Interval. The recommended value was 2 seconds.

Delay needs to be reduced.

Deployment Considerations

Inconsistent flooding rates have the potential to lengthen the period of LSPDB inconsistency in the network.

This increases duration of blackholes/loops.

Recommend not enabling faster flooding until all nodes in the network support it.

Can be enabled per area.

Discussion Points

"Optimize Goodput"

- Tony Li

Barriers to Implementation (hardware, dataplane QOS) Issues with Static Controls Comparisons to TCP The Characteristics of IGP Flooding (Instability Bursts, Node Introduction/Removal/Maintenance) Flooding Speed Goals (Target Speed, Consistency)

107th IETF, April 2019

Barriers to Implementation

A solution which requires hardware/dataplane changes presents a higher bar

- QOS Specific to IS-IS PDUs is not widely available particularly on receive
- Real time communication of dataplane state as regards IS-IS PDUs (queue state, drops, per interface statistics) is not commonly available
- Mapping hardware specific behaviors into a common notification to the protocol
- Rx based flow control depends on such data in order to provide optimal flow control

A solution where feedback is internal to the protocol avoids hardware/dataplane dependencies

- Tx based flow control uses data already available internal to the protocol
- Per interface statistics are inherent

Issues with Static Controls

What impacts the size of the LSPDB and number of PDUs which can be received?

- Number of nodes in the network
- Number of neighbors
- Flooding optimizations supported (mesh groups, parallel neighbor suppression, dynamic flooding) by each neighbor
- Other protocols (BGP, BFD, OAM, link PM)
- Link bandwidth
- Hardware speed/memory
- SRLG deployment

- ...

Optimal Static control of flooding rate easily explodes into a very large number of cases

Comparisons to TCP

ТСР	IS-IS
Byte Stream	Packet Based
Ordered delivery	Unordered delivery
Single independent data stream	Multiple interface streams
Resources managed by control plane	Resources dependent on dataplane

IS-IS Flooding Characteristics

Stable Topology

Refreshes. Distributed more sparsely at scale by using longer lifetimes

- default: 20 minutes
- Maximum: 18 hours

Link Topology Changes

Small number of LSPs updated (depends on optimal LSP Generation) Multiplied (not-linearly) due to shared fate (SRLG)

Node State Changes

Node Up: Full LSPDB sync (Graceful Startup makes this less time critical)

Node Failure: Driven by number of neighbors

Maintenance: Similar to node failure – but can be mitigated by graceful shutdown techniques)

Flooding Speed Goals

Goal 1: Order of magnitude increase in flooding speed

- Currently in 10s of LSPs/second
- Goal in hundreds of LSPs/second
- Thousands of LSPs/second seems aggressive and likely not needed

This helps define the adjustment interval needed for flow control

Goal2: Keep flooding rate interface independent when possible