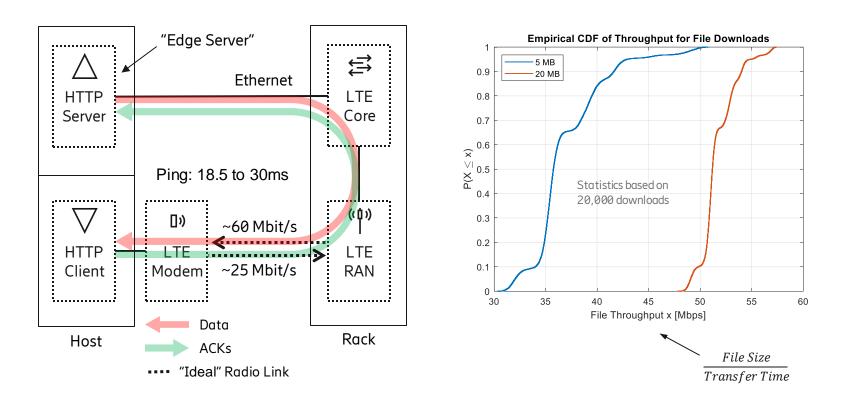
Behavior of TCP CUBIC in Low-Latency Mobile Radio Networks


First results of ongoing Master thesis with RWTH Aachen University & Ericsson

Philipp Bruhn and Maciej Muehleisen

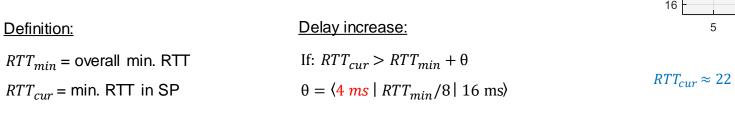
Measurement Setup & Initial Observation

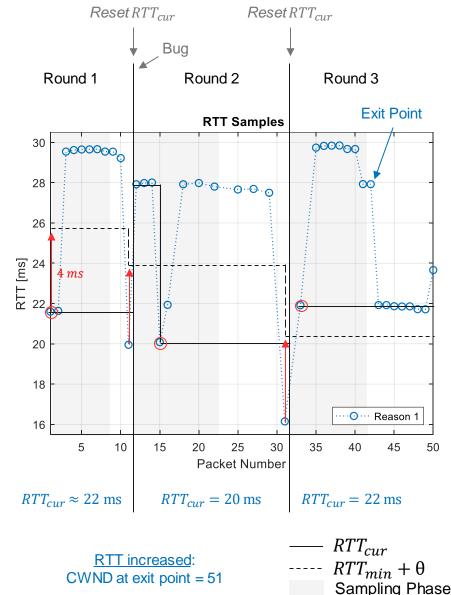
- HTTP server directly connected to LTE core; HTTP client connected via LTE RAN (Mobile Edge Cloud/ Computing type of scenario)
- Host runs Linux¹ on kernel v4.19; TCP CUBIC in default settings
- Ping~18.5 to ~30ms: Variance originates from LTE MAC layer
- Radio link: Stable signal quality, no interference, no cross traffic

→ File throughput shows much larger variance than expected

How HyStart Works

• Two mechanisms to find suitable exit point:


- 1. ACK train length \rightarrow never triggers
- 2. Delay increase: RTT_{cur} exceeds RTT_{min} by $\theta \rightarrow$ congestion!
 - *RTT_{cur}* = smallest RTT sample of first 8 ACKs of each round
 - → HyStart never left during sampling phase (SP) of a round
 - <u>Reason 1</u>: Minimum RTT known; current RTT increases (→ leave after SP)
 - <u>Reason 2</u>: Current RTT known; minimum RTT decreases (→ leave directly)

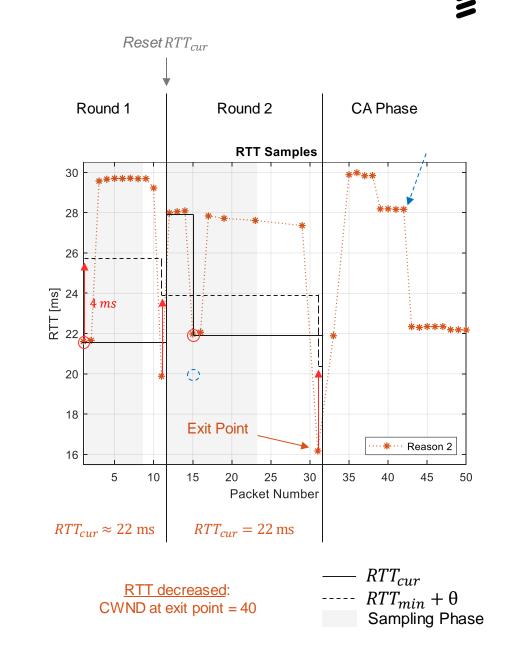

Definition:	Delay increase:
RTT _{min} = overall min. RTT	If: $RTT_{cur} > RTT_{min} + \theta$
RTT_{cur} = min. RTT in SP	$\theta = \langle 4 ms \mid RTT_{min}/8 \mid 16 ms \rangle$

How HyStart Works

• Two mechanisms to find suitable exit point:

- 1. ACK train length \rightarrow never triggers
- 2. Delay increase: RTT_{cur} exceeds RTT_{min} by $\theta \rightarrow$ congestion!
 - *RTT_{cur}* = smallest RTT sample of first 8 ACKs of each round
 → HyStart never left during sampling phase (SP) of a round
 - <u>Reason 1</u>: Minimum RTT known; current RTT increases (→ leave after SP)
 - <u>Reason 2</u>: Current RTT known; minimum RTT decreases (→ leave directly)

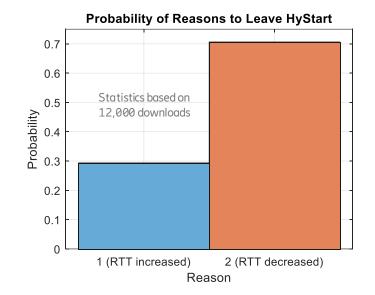
How HyStart Works


• Two mechanisms to find suitable exit point:

- 1. ACK train length \rightarrow never triggers
- 2. Delay increase: RTT_{cur} exceeds RTT_{min} by $\theta \rightarrow$ congestion!
 - *RTT_{cur}* = smallest RTT sample of first 8 ACKs of each round
 → HyStart never left during sampling phase (SP) of a round
 - <u>Reason 1</u>: Minimum RTT known; current RTT increases (→ leave after SP)
 - <u>Reason 2</u>: Current RTT known; minimum RTT decreases (→ leave directly)

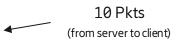
<u>Definition:</u> RTT_{min} = overall min. RTT RTT_{cur} = min. RTT in SP

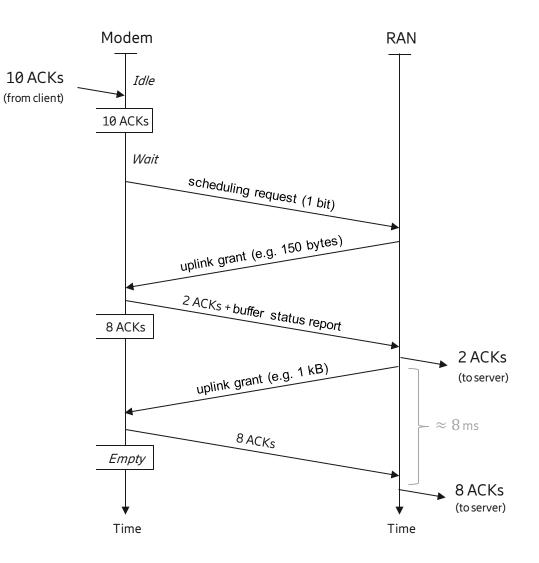
Delay increase:


If: $RTT_{cur} > RTT_{min} + \theta$ $\theta = \langle 4 \text{ ms} | RTT_{min}/8 | 16 \text{ ms} \rangle$

Does HyStart Work?

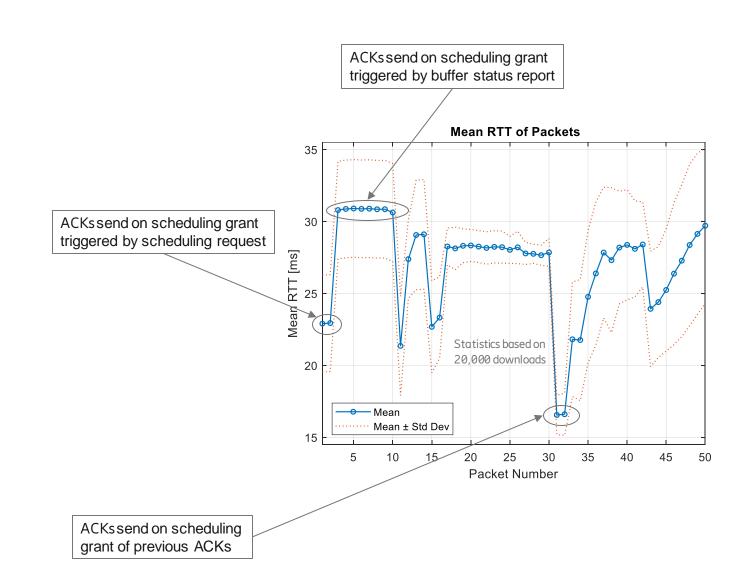
• Two mechanisms to find suitable exit point:


- 1. ACK train length \rightarrow never triggers
- 2. Delay increase: RTT_{cur} exceeds RTT_{min} by $\theta \rightarrow$ congestion!
 - *RTT_{cur}* = smallest RTT sample of first 8 ACKs of each round
 → HyStart never left during sampling phase (SP) of a round
 - <u>Reason 1</u>: Minimum RTT known; current RTT increases (→ leave after SP)
 - <u>Reason 2</u>: Current RTT known; minimum RTT decreases (→ leave directly)


Definition:	Delay increase:
RTT_{min} = overall min. RTT	If: $RTT_{cur} > RTT_{min} + \theta$
RTT_{cur} = min. RTT in SP	$\theta = \langle 4 ms \mid RTT_{min}/8 \mid 16 ms \rangle$

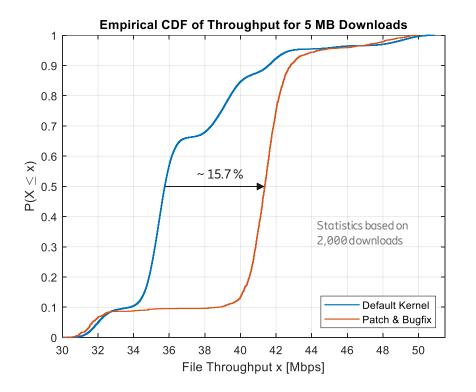
1

Uplink Scheduling



- Radio Access Network (RAN) controls all transmissions²
- Modem needs uplink resources to transmit data (ACKs)
 - 1. Modem already has uplink grant:
 - → Piggyback buffer status report onto next transmission
 - 2. Modem does not have uplink grant:
 - ightarrow Send 1-bit scheduling request in uplink control channel
- \rightarrow MAC layer effects primary cause of RTT variation

Why HyStart Fails

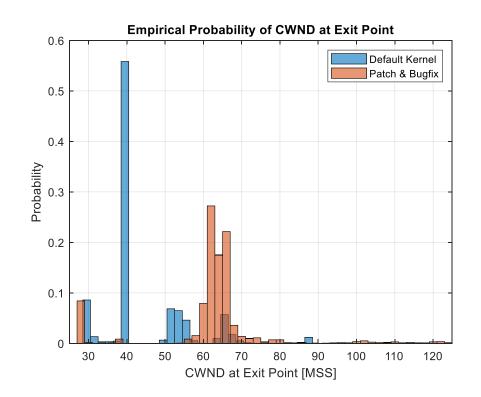

- RTT variance due to:
 - Different kinds of uplink scheduling
 - Underlying MAC layer periodicities
- RTT drop causes false positive detection of network congestion / too early exit point
- ightarrow Connection far from maximum throughput
- \rightarrow MAC layer effects dominate behavior and performance of TCP CUBIC

- CUBIC connections may experience significant file throughput variance over LTE
 - HyStart may fail to find suitable exit point due to latency variance of LTE
- Improvements:

Conclusion

- Bug: HyStart-reset was done one packet too late \rightarrow fixed
- Patch: Do not exit in current round due to new RTT_{min}
- HyStart does not consider RTT variance → may not be wellsuited for mobile radio networks
- Trials conducted with 4G LTE, but 5G New Radio uses same uplink scheduling principles

20 MB: Improvement by ~5.4%



philipp.bruhn@ericsson.com

maciej.muehleisen@ericsson.com

• Kernel patch and bugfix result in larger CWND at exit point \rightarrow improves mean throughput significantly

