MLS interim

NYGC January 2020

Raphael Robert, Benjamin Beurdouche

Summary

- Ciphersuites
- Server assist / DS specification
- Deniability

Giphersuites

Open questions:

- Is the signature scheme fixed for the group (vs per client signature scheme)?
- If so, is the signature scheme part of the ciphersuite?

- What ciphersuites do we want?

- Should there be an MTI? (which one)

Giphersuites

Current list:

MLS10 128 HPKEX25519 AES128GCM_SHA256 Ed25519

MLS10 128 HPKEP256_ AES128GCM_SHA256 P256

MLS10 128 HPKEX25519 CHACHA20POLY1305 SHA256 Ed25519
MLS10 256 HPKEX448 AES256GCM_SHA384 Ed448

MLS10_ 256 _HPKEP521_AES256GCM_SHA384 P521

MLS10_256_HPKEX448 CHACHA20POLY1305_SHA256_Ed448

{0x00,0x01}
{0x00,0x02}
{0x00,0x03}
{0x00,0x04}
{0x00,0x05}

{0x00,0x06}

- New I-D specifying aspects of the DS
- Emphasis on metadata protection
- 3 modes for group state/metadata distribution

3 modes:

- P2P transfer of group state in the Welcome message (as currently defined in
protocol draft)

- Ratcheting tree is stored on the DS in plaintext (including hashes, signatures
and credentials in leaf nodes)

- Encrypted tree is stored on the DS

Encrypted server assist

Naive approach:

- The tree is stored on the DS symmetrically encrypted

- The key changes with every epoch

- The DS receives the old & new key, decrypts the tree, fans out the message
according to the roster, re-encrypts the tree under the new key before
persisting on disk (beware of privacy after remove)

- The encryption keys are exported from the key schedule

Encrypted server assist

Advantages:

- Gives us “encryption at rest”

- The roster is only known temporarily to the DS (same as Signal)
- Relatively lightweight computationally

- Scales well for large groups

Encrypted server assist

Protection of metadata in queues:

- Metadata in message headers allow for correlation of messages (guess group
membership)

- Messages could be blinded by DS and reconstructed by clients

- Messages could be encrypted by DS and decrypted by clients (KEMed to
clients)

Encrypted server assist

Other aspects:

- Clients should authenticate to the DS to prove membership of a group
(deniably)

- Clients can retrieve only parts of the tree (like direct path and copath), integrity
checks? Probably.

Encrypted server assist

Fancier concepts:

- Use proxy re-encryption (PRE) to re-encrypt tree between epochs (more load
on the server, “hipster crypto”, what about the roster?)

- Other technologies?
- The nice thing is that specific mechanisms to protect privacy are mainly

independent from the protocol

Deniability
Basic idea:

- Send signature keys over a deniable channel to clients (similar to “sender
keys” concept)

- Re-use ClientlnitKeys to establish the deniable channel

- Concrete proposal of a mechanism based on HPKE

A volunteer foran I-D ?

Deniability

Signatures that can be deniable:

- Proposals
- Commits
- Application messages

Signatures that cannot be deniable:

- CIKs
- Tree signatures®

(*) Discussion needed

Deniability

Deniable HPKE:

1. Use unauthenticated HPKE to send a deniable content such as a completely
fresh CIK and an authenticated CIK from the initiator (This CIK is completely
unauthenticated)

2. Do a static - static between the initiator and the responder CIKs which are
strongly authenticated by the AS such that the deniable content is now
implicitly authenticated

3. Create or use a deniable CIK in the protocol. Beware that the the guarantees
given depend on the ContentType. (This step can be dangerous)

