
 A symbolic analysis of MLS 
in F*

Karthikeyan Bhargavan 
Benjamin Beurdouche

Prasad Naldurg
MLS Interim, Jan 2020



What we did
● Formal requirements for MLS as an F* interface

○ Functional and security goals written
independent from protocol mechanisms

● Formal specification for MLS draft 7 as an F* module
○ Covers: key establishment, long-term signature keys, message protection

○ Does not cover: application tree key schedule, proposals/commits, ...

● Proof that the specification meets the requirements
○ Assuming a symbolic model of cryptographic primitives

○ Machine-checked proof by type-checking in F*



Specifying MLS draft 7 in F*
A succinct, modular, executable, formal specification

● Succinct: A spec of MLS in ~200 lines of F*
● Modular: Separation between key establishment / message protection. 
● Executable:  The spec can be executed to obtain concrete traces, and 

can be used as an interop target
● Easy to modify: By changing 2-3 functions, we obtain specs for mKEM, 

ART, TreeKEM (without blanking), TreeKEM (with signatures) etc.



Modeling Compromise
● Attacker can compromise any member’s credential
● Attacker can compromise the current decryption key of a member 
● Attacker can compromise a previous decryption key of a member  
● Using any of these compromises, attacker can try to 

actively attack the protocol

● Modeling this level of fine-grained, dynamic, active compromise in F* 
required a new model of global state and corruption events



Verified Security Goals
● The membership of a group state g is the current versions 

of the current members of g
● Message Confidentiality: a message sent in group state g is 

confidential as long as the decryption keys of all members of g 
remain uncompromised

● Message and Sender Authenticity: a message received from some 
sender in group state g is authentic if the current credential of the sender 
is uncompromised

● Group Agreement: after receiving a group operation, the group state at 
the receiver and sender is the same, if the sender’s credential is 
uncompromised

● Applying Update, Add, Remove operations preserves these properties 



What about FS, PCS?
● FS and PCS are imprecise terms when used with groups, needs context
● In our model, by looking at the membership of a group state, one can 

read off various security guarantees that can be interpreted as specific 
forms of FS and PCS 

● Update FS: If a member updates its key and the new key is then 
compromised, the previous group secret remains confidential
(rTreeKEM provides a strictly stronger guarantee)

● Add FS: If a member is added and is then compromised, the previous 
group secret remains confidential 

● Update PCS: If a member updates its key and the previous key is then 
compromised, the next group secret remains confidential



A Note on Remove PCS
● In two party protocols, we usually only consider recovery against passive 

compromise, so PCS is really seen as post passive compromise security
● In group messaging, we have another choice: we could remove the 

misbehaving member, to obtain post active compromise security

● Remove Security:  If a member was (actively) compromised and is then 
removed from a group, the new group secret remains confidential

(We believe this should be an explicit goal of MLS protocols.)



Attacks that appeared in our model
● Double Join: our model of TreeKEM (without blanking) has a double-join 

attack; TreeKEM (with blanking) has a double-join attack at Welcome

● Cross-Group Forwarding Attack: Draft 7 does not include transcript in 
message signatures, enabling this attack 

● Stream Truncation between epochs: no previous-message counter



Ongoing and Future Work
● Release models along with F*-based analysis framework
● Interop test our specification with other implementations

● Incorporate proposals+commits, application key schedule, etc.
● Experiment with plugging in UPKE to obtain a model of rTreeKEM
● Experiment with rotating signature keys, tree signatures, …

● Link our symbolic proofs to a computationally sound crypto model



Formalizing Requirements: Members

● Members have versioned encryption keys (tracked within the protocol)
● Members have credentials that can be validated by any other member

(Credentials may also change over time)
● An attacker can compromise a specific version of a specific member



An API for Group Management

● Abstract types for groups, operations
● Each protocol instantiates it with its 

own data structures
● Each protocol then implements:

create, apply, modify, calculate_secret 



An API for Message Protection
● Multiple kinds of message

● Message protection is 
independent of group key 
establishment, except that it 
relies on the group secret





Subgroup Secrecy Invariant

● Every occupied leaf in the tree with member info mi contains a valid 
credential with a verification key labeled with the auth session of mi. 
Further, the current encryption key at the leaf is labeled with the dec 
session of mi. 

 

● Every non-blank node in the tree contains a key package with a public 
encryption key and a ciphertext. If none of the members of the sub-tree 
are auth compromised, then the label of the encryption key matches the 
tree label of the subtree, and the ciphertext contains an encrypted secret 
that is also labeled with the tree label of the subtree 
 

 


