
MOPS M.P. Sharabayko
Internet-Draft M.A. Sharabayko
Intended status: Standards Track Haivision Network Video, GmbH
Expires: 13 March 2021 J. Dube
 Haivision
 JS. Kim
 JW. Kim
 SK Telecom Co., Ltd.
 9 September 2020

 The SRT Protocol
 draft-sharabayko-mops-srt-01

Abstract

 This document specifies Secure Reliable Transport (SRT) protocol.
 SRT is a user-level protocol over User Datagram Protocol and provides
 reliability and security optimized for low latency live video
 streaming, as well as generic bulk data transfer. For this, SRT
 introduces control packet extension, improved flow control, enhanced
 congestion control and a mechanism for data encryption.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 March 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.

Sharabayko, et al. Expires 13 March 2021 [Page 1]

Internet-Draft SRT September 2020

 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Motivation . 3
 1.2. Secure Reliable Transport Protocol 4
 2. Terms and Definitions . 5
 3. Packet Structure . 6
 3.1. Data Packets . 7
 3.2. Control Packets . 8
 3.2.1. Handshake . 9
 3.2.2. Key Material . 17
 3.2.3. Keep-Alive . 21
 3.2.4. ACK (Acknowledgment) 22
 3.2.5. NAK (Loss Report) 24
 3.2.6. Shutdown . 25
 3.2.7. ACKACK . 26
 4. SRT Data Transmission and Control 26
 4.1. Stream Multiplexing 27
 4.2. Data Transmission Modes 27
 4.2.1. Message Mode . 27
 4.2.2. Live Mode . 28
 4.2.3. Buffer Mode . 28
 4.3. Handshake Messages 28
 4.3.1. Caller-Listener Handshake 31
 4.3.2. Rendezvous Handshake 33
 4.4. SRT Buffer Latency 39
 4.5. Timestamp-Based Packet Delivery 40
 4.5.1. Packet Delivery Time 42
 4.6. Too-Late Packet Drop 43
 4.7. Drift Management . 44
 4.8. Acknowledgement and Lost Packet Handling 46
 4.8.1. Packet Acknowledgement (ACKs, ACKACKs) 46
 4.8.2. Packet Retransmission (NAKs) 47
 4.9. Bidirectional Transmission Queues 49
 4.10. Round-Trip Time Estimation 49
 4.11. Congestion Control 50
 5. Encryption . 50
 5.1. Overview . 51
 5.1.1. Encryption Scope 51
 5.1.2. AES Counter . 51
 5.1.3. Stream Encrypting Key (SEK) 51
 5.1.4. Key Encrypting Key (KEK) 52

Sharabayko, et al. Expires 13 March 2021 [Page 2]

Internet-Draft SRT September 2020

 5.1.5. Key Material Exchange 52
 5.1.6. KM Refresh . 53
 5.2. Encryption Process 54
 5.2.1. Generating the Stream Encrypting Key 54
 5.2.2. Encrypting the Payload 54
 5.3. Decryption Process 54
 5.3.1. Restoring the Stream Encrypting Key 55
 5.3.2. Decrypting the Payload 55
 6. Security Considerations 56
 7. IANA Considerations . 56
 Contributors . 56
 Acknowledgments . 56
 References . 56
 Normative References . 56
 Informative References . 57
 Appendix A. Packet Sequence List Coding 59
 Appendix B. SRT Access Control 60
 B.1. General Syntax . 60
 B.2. Standard Keys . 61
 B.3. Examples . 62
 Appendix C. Changelog . 62
 C.1. Since Version 00 . 62
 Authors’ Addresses . 63

1. Introduction

1.1. Motivation

 The demand for live video streaming has been increasing steadily for
 many years. With the emergence of cloud technologies, many video
 processing pipeline components have transitioned from on-premises
 appliances to software running on cloud instances. While real-time
 streaming over TCP-based protocols like RTMP [RTMP] is possible at
 low bitrates and on a small scale, the exponential growth of the
 streaming market has created a need for more powerful solutions.

 To improve scalability on the delivery side, content delivery
 networks (CDNs) at one point transitioned to segmentation-based
 technologies like HLS (HTTP Live Streaming) [RFC8216] and DASH
 (Dynamic Adaptive Streaming over HTTP) [ISO23009]. This move
 increased the end-to-end latency of live streaming to over 30
 seconds, which makes it unattractive for many use cases. Over time,
 the industry optimized these delivery methods, bringing the latency
 down to 3 seconds.

Sharabayko, et al. Expires 13 March 2021 [Page 3]

Internet-Draft SRT September 2020

 While the delivery side scaled up, improvements to video transcoding
 became a necessity. Viewers watch video streams on a variety of
 different devices, connected over different types of networks. Since
 upload bandwidth from on-premises locations is often limited, video
 transcoding moved to the cloud.

 RTMP became the de facto standard for contribution over the public
 Internet. But there are limitations for the payload to be
 transmitted, since RTMP as a media specific protocol only supports
 two audio channels and a restricted set of audio and video codecs,
 lacking support for newer formats such as HEVC [H.265], VP9 [VP9], or
 AV1 [AV1].

 Since RTMP, HLS and DASH rely on TCP, these protocols can only
 guarantee acceptable reliability over connections with low RTTs, and
 can not use the bandwidth of network connections to their full extent
 due to limitations imposed by congestion control. Notably, QUIC
 [I-D.ietf-quic-transport] has been designed to address these problems
 with HTTP-based delivery protocols in HTTP/3 [I-D.ietf-quic-http].
 Like QUIC, SRT [SRTSRC] uses UDP instead of the TCP transport
 protocol, but assures more reliable delivery using Automatic Repeat
 Request (ARQ), packet acknowledgments, end-to-end latency management,
 etc.

1.2. Secure Reliable Transport Protocol

 Low latency video transmissions across reliable (usually local) IP
 based networks typically take the form of MPEG-TS [ISO13818-1]
 unicast or multicast streams using the UDP/RTP protocol, where any
 packet loss can be mitigated by enabling forward error correction
 (FEC). Achieving the same low latency between sites in different
 cities, countries or even continents is more challenging. While it
 is possible with satellite links or dedicated MPLS [RFC3031]
 networks, these are expensive solutions. The use of public Internet
 connectivity, while less expensive, imposes significant bandwidth
 overhead to achieve the necessary level of packet loss recovery.
 Introducing selective packet retransmission (reliable UDP) to recover
 from packet loss removes those limitations.

 Derived from the UDP-based Data Transfer (UDT) protocol [GHG04b], SRT
 is a user-level protocol that retains most of the core concepts and
 mechanisms while introducing several refinements and enhancements,
 including control packet modifications, improved flow control for
 handling live streaming, enhanced congestion control, and a mechanism
 for encrypting packets.

Sharabayko, et al. Expires 13 March 2021 [Page 4]

Internet-Draft SRT September 2020

 SRT is a transport protocol that enables the secure, reliable
 transport of data across unpredictable networks, such as the
 Internet. While any data type can be transferred via SRT, it is
 ideal for low latency (sub-second) video streaming. SRT provides
 improved bandwidth utilization compared to RTMP, allowing much higher
 contribution bitrates over long distance connections.

 As packets are streamed from source to destination, SRT detects and
 adapts to the real-time network conditions between the two endpoints,
 and helps compensate for jitter and bandwidth fluctuations due to
 congestion over noisy networks. Its error recovery mechanism
 minimizes the packet loss typical of Internet connections.

 To achieve low latency streaming, SRT had to address timing issues.
 The characteristics of a stream from a source network are completely
 changed by transmission over the public Internet, which introduces
 delays, jitter, and packet loss. This, in turn, leads to problems
 with decoding, as the audio and video decoders do not receive packets
 at the expected times. The use of large buffers helps, but latency
 is increased. SRT includes a mechanism to keep a constant end-to-end
 latency, thus recreating the signal characteristics on the receiver
 side, and reducing the need for buffering.

 Like TCP, SRT employs a listener/caller model. The data flow is bi-
 directional and independent of the connection initiation - either the
 sender or receiver can operate as listener or caller to initiate a
 connection. The protocol provides an internal multiplexing
 mechanism, allowing multiple SRT connections to share the same UDP
 port, providing access control functionality to identify the caller
 on the listener side.

 Supporting forward error correction (FEC) and selective packet
 retransmission (ARQ), SRT provides the flexibility to use either of
 the two mechanisms or both combined, allowing for use cases ranging
 from the lowest possible latency to the highest possible reliability.

 SRT maintains the ability for fast file transfers introduced in UDT,
 and adds support for AES encryption.

2. Terms and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 SRT: The Secure Reliable Transport protocol described by this

Sharabayko, et al. Expires 13 March 2021 [Page 5]

Internet-Draft SRT September 2020

 document.

 PRNG: Pseudo-Random Number Generator.

3. Packet Structure

 SRT packets are transmitted as UDP payload [RFC0768]. Every UDP
 packet carrying SRT traffic contains an SRT header immediately after
 the UDP header (Figure 1).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SrcPort | DstPort |
 +-+
 | Len | ChkSum |
 +-+
 | |
 + SRT Packet +
 | |
 +-+

 Figure 1: SRT packet as UDP payload

 SRT has two types of packets distinguished by the Packet Type Flag:
 data packet and control packet.

 The structure of the SRT packet is shown in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |F| (Field meaning depends on the packet type) |
 +-+
 | (Field meaning depends on the packet type) |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+
 | |
 + Packet Contents |
 | (depends on the packet type) +
 | |
 +-+

 Figure 2: SRT packet structure

Sharabayko, et al. Expires 13 March 2021 [Page 6]

Internet-Draft SRT September 2020

 F: 1 bit. Packet Type Flag. The control packet has this flag set to
 "1". The data packet has this flag set to "0".

 Timestamp: 32 bits. The timestamp of the packet, in microseconds.
 The value is relative to the time the SRT connection was
 established. Depending on the transmission mode (Section 4.2),
 the field stores the packet send time or the packet origin time.

 Destination Socket ID: 32 bits. A fixed-width field providing the
 SRT socket ID to which a packet should be dispatched. The field
 may have the special value "0" when the packet is a connection
 request.

3.1. Data Packets

 The structure of the SRT data packet is shown in Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0| Packet Sequence Number |
 +-+
 |P P|O|K K|R| Message Number |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+
 | |
 + Data +
 | |
 +-+

 Figure 3: Data packet structure

 Packet Sequence Number: 31 bits. The sequential number of the data
 packet.

 PP: 2 bits. Packet Position Flag. This field indicates the position
 of the data packet in the message. The value "10b" (binary) means
 the first packet of the message. "00b" indicates a packet in the
 middle. "01b" designates the last packet. If a single data packet
 forms the whole message, the value is "11b".

 O: 1 bit. Order Flag. Indicates whether the message should be
 delivered by the receiver in order (1) or not (0). Certain
 restrictions apply depending on the data transmission mode used
 (Section 4.2).

Sharabayko, et al. Expires 13 March 2021 [Page 7]

Internet-Draft SRT September 2020

 KK: 2 bits. Key-based Encryption Flag. The flag bits indicate
 whether or not data is encrypted. The value "00b" (binary) means
 data is not encrypted. "01b" indicates that data is encrypted with
 an even key, and "10b" is used for odd key encryption. Refer to
 Section 5. The value "11b" is only used in control packets.

 R: 1 bit. Retransmitted Packet Flag. This flag is clear when a
 packet is transmitted the first time. The flag is set to "1" when
 a packet is retransmitted.

 Message Number: 26 bits. The sequential number of consecutive data
 packets that form a message (see PP field).

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 Data: variable length. The payload of the data packet. The length
 of the data is the remaining length of the UDP packet.

3.2. Control Packets

 An SRT control packet has the following structure.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Control Type | Subtype |
 +-+
 | Type-specific Information |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+- CIF -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 + Control Information Field +
 | |
 +-+

 Figure 4: Control packet structure

 Control Type: 15 bits. Control Packet Type. The use of these bits
 is determined by the control packet type definition. See Table 1.

 Subtype: 16 bits. This field specifies an additional subtype for
 specific packets. See Table 1.

Sharabayko, et al. Expires 13 March 2021 [Page 8]

Internet-Draft SRT September 2020

 Type-specific Information: 32 bits. The use of this field depends on
 the particular control packet type. Handshake packets do not use
 this field.

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 Control Information Field (CIF): variable length. The use of this
 field is defined by the Control Type field of the control packet.

 The types of SRT control packets are shown in Table 1. The value
 "0x7FFF" is reserved for a user-defined type.

 +===================+==============+=========+===============+
 | Packet Type | Control Type | Subtype | Section |
 +===================+==============+=========+===============+
 | HANDSHAKE | 0x0000 | 0x0 | Section 3.2.1 |
 +-------------------+--------------+---------+---------------+
 | KEEPALIVE | 0x0001 | 0x0 | Section 3.2.3 |
 +-------------------+--------------+---------+---------------+
 | ACK | 0x0002 | 0x0 | Section 3.2.4 |
 +-------------------+--------------+---------+---------------+
 | NAK (Loss Report) | 0x0003 | 0x0 | Section 3.2.5 |
 +-------------------+--------------+---------+---------------+
 | SHUTDOWN | 0x0005 | 0x0 | Section 3.2.6 |
 +-------------------+--------------+---------+---------------+
 | ACKACK | 0x0006 | 0x0 | Section 3.2.7 |
 +-------------------+--------------+---------+---------------+
 | User-Defined Type | 0x7FFF | - | N/A |
 +-------------------+--------------+---------+---------------+

 Table 1: SRT Control Packet Types

3.2.1. Handshake

 Handshake control packets (Control Type = 0x0000) are used to
 exchange peer configurations, to agree on connection parameters, and
 to establish a connection.

 The Control Information Field (CIF) of a handshake control packet is
 shown in Figure 5.

Sharabayko, et al. Expires 13 March 2021 [Page 9]

Internet-Draft SRT September 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version |
 +-+
 | Encryption Field | Extension Field |
 +-+
 | Initial Packet Sequence Number |
 +-+
 | Maximum Transmission Unit Size |
 +-+
 | Maximum Flow Window Size |
 +-+
 | Handshake Type |
 +-+
 | SRT Socket ID |
 +-+
 | SYN Cookie |
 +-+
 | |
 + +
 | |
 + Peer IP Address +
 | |
 + +
 | |
 +=+
 | Extension Type | Extension Length |
 +-+
 | |
 + Extension Contents +
 | |
 +=+

 Figure 5: Handshake packet structure

 Version: 32 bits. A base protocol version number. Currently used
 values are 4 and 5. Values greater than 5 are reserved for future
 use.

 Encryption Field: 16 bits. Block cipher family and key size. The
 values of this field are described in Table 2. The default value
 is AES-128.

Sharabayko, et al. Expires 13 March 2021 [Page 10]

Internet-Draft SRT September 2020

 +=======+============================+
 | Value | Cipher family and key size |
 +=======+============================+
 | 0 | No Encryption Advertised |
 +-------+----------------------------+
 | 2 | AES-128 |
 +-------+----------------------------+
 | 3 | AES-192 |
 +-------+----------------------------+
 | 4 | AES-256 |
 +-------+----------------------------+

 Table 2: Handshake Encryption
 Field Values

 Extension Field: 16 bits. This field is message specific extension
 related to Handshake Type field. The value MUST be set to 0
 except for the following cases. (1) If the handshake control
 packet is the INDUCTION message, this field is sent back by the
 Listener. (2) In the case of a CONCLUSION message, this field
 value should contain a combination of Extension Type values. For
 more details, see Section 4.3.1.

 +============+========+
 | Bitmask | Flag |
 +============+========+
 | 0x00000001 | HSREQ |
 +------------+--------+
 | 0x00000002 | KMREQ |
 +------------+--------+
 | 0x00000004 | CONFIG |
 +------------+--------+

 Table 3: Handshake
 Extension Flags

 Initial Packet Sequence Number: 32 bits. The sequence number of the
 very first data packet to be sent.

 Maximum Transmission Unit Size: 32 bits. This value is typically set
 to 1500, which is the default Maximum Transmission Unit (MTU) size
 for Ethernet, but can be less.

 Maximum Flow Window Size: 32 bits. The value of this field is the
 maximum number of data packets allowed to be "in flight"

 (i.e. the number of sent packets for which an ACK control packet
 has not yet been received).

Sharabayko, et al. Expires 13 March 2021 [Page 11]

Internet-Draft SRT September 2020

 Handshake Type: 32 bits. This field indicates the handshake packet
 type. The possible values are described in Table 4. For more
 details refer to Section 4.3.

 +============+================+
 | Value | Handshake type |
 +============+================+
 | 0xFFFFFFFD | DONE |
 +------------+----------------+
 | 0xFFFFFFFE | AGREEMENT |
 +------------+----------------+
 | 0xFFFFFFFF | CONCLUSION |
 +------------+----------------+
 | 0x00000000 | WAVEHAND |
 +------------+----------------+
 | 0x00000001 | INDUCTION |
 +------------+----------------+

 Table 4: Handshake Type

 SRT Socket ID: 32 bits. This field holds the ID of the source SRT
 socket from which a handshake packet is issued.

 SYN Cookie: 32 bits. Randomized value for processing a handshake.
 The value of this field is specified by the handshake message
 type. See Section 4.3.

 Peer IP Address: 128 bits. IPv4 or IPv6 address of the packet’s
 sender. The value consists of four 32-bit fields. In the case of
 IPv4 addresses, fields 2, 3 and 4 are filled with zeroes.

 Extension Type: 16 bits. The value of this field is used to process
 an integrated handshake. Each extension can have a pair of
 request and response types.

Sharabayko, et al. Expires 13 March 2021 [Page 12]

Internet-Draft SRT September 2020

 +=======+====================+===================+
 | Value | Extension Type | HS Extension Flag |
 +=======+====================+===================+
 | 1 | SRT_CMD_HSREQ | HSREQ |
 +-------+--------------------+-------------------+
 | 2 | SRT_CMD_HSRSP | HSREQ |
 +-------+--------------------+-------------------+
 | 3 | SRT_CMD_KMREQ | KMREQ |
 +-------+--------------------+-------------------+
 | 4 | SRT_CMD_KMRSP | KMREQ |
 +-------+--------------------+-------------------+
 | 5 | SRT_CMD_SID | CONFIG |
 +-------+--------------------+-------------------+
 | 6 | SRT_CMD_CONGESTION | CONFIG |
 +-------+--------------------+-------------------+
 | 7 | SRT_CMD_FILTER | CONFIG |
 +-------+--------------------+-------------------+
 | 8 | SRT_CMD_GROUP | CONFIG |
 +-------+--------------------+-------------------+

 Table 5: Handshake Extension Type values

 Extension Length: 16 bits. The length of the Extension Contents
 field in four-byte blocks.

 Extension Contents: variable length. The payload of the extension.

3.2.1.1. Handshake Extension Message

 In a Handshake Extension, the value of the Extension Field of the
 handshake control packet is defined as 1 for a Handshake Extension
 request (SRT_CMD_HSREQ in Table 5), and 2 for a Handshake Extension
 response (SRT_CMD_HSRSP in Table 5).

 The Extension Contents field of a Handshake Extension Message is
 structured as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SRT Version |
 +-+
 | SRT Flags |
 +-+
 | Receiver TSBPD Delay | Sender TSBPD Delay |
 +-+

 Figure 6: Handshake Extension Message structure

Sharabayko, et al. Expires 13 March 2021 [Page 13]

Internet-Draft SRT September 2020

 SRT Version: 32 bits. SRT library version MUST be formed as major *
 0x10000 + minor * 0x100 + patch.

 SRT Flags: 32 bits. SRT configuration flags (see Section 3.2.1.1.1).

 Receiver TSBPD Delay: 16 bits. Timestamp-Based Packet Delivery
 (TSBPD) Delay of the receiver. Refer to Section 4.5.

 Sender TSBPD Delay: 16 bits. TSBPD of the sender. Refer to
 Section 4.5.

3.2.1.1.1. Handshake Extension Message Flags

 +============+===============+
 | Bitmask | Flag |
 +============+===============+
 | 0x00000001 | TSBPDSND |
 +------------+---------------+
 | 0x00000002 | TSBPDRCV |
 +------------+---------------+
 | 0x00000004 | CRYPT |
 +------------+---------------+
 | 0x00000008 | TLPKTDROP |
 +------------+---------------+
 | 0x00000010 | PERIODICNAK |
 +------------+---------------+
 | 0x00000020 | REXMITFLG |
 +------------+---------------+
 | 0x00000040 | STREAM |
 +------------+---------------+
 | 0x00000080 | PACKET_FILTER |
 +------------+---------------+

 Table 6: Handshake
 Extension Message Flags

 * TSBPDSND flag defines if the TSBPD mechanism (Section 4.5) will be
 used for sending.

 * TSBPDRCV flag defines if the TSBPD mechanism (Section 4.5) will be
 used for receiving.

 * CRYPT flag MUST be set. It is a legacy flag that indicates the
 party understands KK field of the SRT Packet (Figure 3).

 * TLPKTDROP flag should be set if too-late packet drop mechanism
 will be used during transmission. See Section 4.6.

Sharabayko, et al. Expires 13 March 2021 [Page 14]

Internet-Draft SRT September 2020

 * PERIODICNAK flag set indicates the peer will send periodic NAK
 packets. See Section 4.8.2.

 * REXMITFLG flag MUST be set. It is a legacy flag that indicates
 the peer understands the R field of the SRT DATA Packet
 (Figure 3).

 * STREAM flag identifies the transmission mode (Section 4.2) to be
 used in the connection. If the flag is set the buffer mode
 (Section 4.2.3) will be used. Otherwise, message mode
 (Section 4.2.1) is to be used.

 * PACKET_FILTER flag indicates if the peer supports packet filter.

3.2.1.2. Key Material Extension Message

 If an encrypted connection is being established, the Key Material
 (KM) is first transmitted as a Handshake Extension message. This
 extension is not supplied for unprotected connections. The purpose
 of the extension is to let peers exchange and negotiate encryption-
 related information to be used to encrypt and decrypt the payload of
 the stream.

 The extension can be supplied with the Handshake Extension Type field
 set to either SRT_CMD_KMREQ or SRT_CMD_HSRSP (see Table 5 in
 Section 3.2.1). For more details refer to Section 4.3.

 The KM message is placed in the Extension Contents. See
 Section 3.2.2 for the structure of the KM message.

3.2.1.3. Stream ID Extension Message

 The Stream ID handshake extension message can be used to identify the
 stream content. The Stream ID value can be free-form, but there is
 also a recommended convention that can be used to achieve
 interoperability.

 The Stream ID handshake extension message has SRT_CMD_SID extension
 type (see Table 5. The extension contents are a sequence of UTF-8
 characters. The maximum allowed size of the StreamID extension is
 512 bytes.

Sharabayko, et al. Expires 13 March 2021 [Page 15]

Internet-Draft SRT September 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Stream ID |
 ...
 | |
 +-+

 Figure 7: Stream ID Extension Message

 The Extension Contents field holds a sequence of UTF-8 characters
 (see Figure 7). The maximum allowed size of the StreamID extension
 is 512 bytes. The actual size is determined by the Extension Length
 field (Figure 5), which defines the length in four byte blocks. If
 the actual payload is less than the declared length, the remaining
 bytes are set to zeros.

 The content is stored as 32-bit little endian words.

3.2.1.4. Group Membership Extension

 The Group Membership handshake extension is used to distinguish
 single SRT connections and bonded SRT connections (group
 connections).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Group ID |
 +-+
 | Type | Flags | Weight |
 +-+

 Figure 8: Group Membership Extension Message

 GroupID: 32 bits. The identifier of a group whose members include
 the sender socket that is making a connection. The target socket
 that should interpret it should belong to the corresponding group
 on its side (or should create one, if it doesn’t exist).

 Type: 8 bits. Group type, as per SRT_GTYPE_ enumeration.

 * 0: undefined group type,

 * 1: broadcast group type,

 * 2: main/backup group type

Sharabayko, et al. Expires 13 March 2021 [Page 16]

Internet-Draft SRT September 2020

 * 3: balancing group type (reserved for future use)

 * 4: multicast group type (reserved for future use)

 Flags: 8 bits. Special flags mostly reserved for the future. See
 Figure 9.

 Weight: 16 bits. Special value with interpretation depending on the
 Type field value.

 * Not used with broadcast groups.

 * Defines the link priority in backup groups.

 * Not yet defined (reserved for future) for any other cases.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+
 | (zero) |M|
 +-+-+-+-+-+-+-+

 Figure 9: Group Membership Extension Flags

 M: 1 bit. When set, defines synchronization on message numbers,
 otherwise transmission is synchronized on sequence numbers.

3.2.2. Key Material

 The purpose of the Key Material Message is to let peers exchange
 encryption-related information to be used to encrypt and decrypt the
 payload of the stream.

 This message can be supplied in two possible ways:

 * as a Handshake Extension, see Section 3.2.1.2,

 * in the Content Information Field of the User-Defined control
 packet (described below).

 When the Key Material is transmitted as a control packet, the Control
 Type field of the SRT packet header is set to User-Defined Type (see
 Table 1), the Subtype field of the header is set to SRT_CMD_KMREQ for
 key-refresh request and SRT_CMD_KMRSP for key-refresh response
 (Table 5). The KM Refresh mechanism is described in Section 5.1.6.

 The structure of the Key Material message is illustrated in
 Figure 10.

Sharabayko, et al. Expires 13 March 2021 [Page 17]

Internet-Draft SRT September 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |S| V | PT | Sign | Resv1 | KK|
 +-+
 | KEKI |
 +-+
 | Cipher | Auth | SE | Resv2 |
 +-+
 | Resv3 | SLen/4 | KLen/4 |
 +-+
 | Salt |
 +-+
 | |
 + Wrapped Key +
 | |
 +-+

 Figure 10: Key Material Message structure

 S: 1 bit, value = {0}. This is a fixed-width field that is reserved
 for future usage.

 Version (V): 3 bits, value = {1}. This is a fixed-width field that
 indicates the SRT version:

 * 1: initial version

 Packet Type (PT): 4 bits, value = {2}. This is a fixed-width field
 that indicates the Packet Type:

 * 0: Reserved

 * 1: Media Stream Message (MSmsg)

 * 2: Keying Material Message (KMmsg)

 * 7: Reserved to discriminate MPEG-TS packet (0x47=sync byte)

 Sign: 16 bits, value = {0x2029}. This is a fixed-width field that
 contains the signature ’HAI’ encoded as a PnP Vendor ID ([PNPID])
 (in big-endian order)

 Resv1: 6 bits, value = {0}. This is a fixed-width field reserved for
 flag extension or other usage.

 Key-based Encryption (KK): 2 bits. This is a fixed-width field that

Sharabayko, et al. Expires 13 March 2021 [Page 18]

Internet-Draft SRT September 2020

 indicates which SEKs (odd and/or even) are provided in the
 extension:

 * 00b: no SEK is provided (invalid extension format)

 * 01b: even key is provided

 * 10b: odd key is provided

 * 11b: both even and odd keys are provided

 Key Encryption Key Index (KEKI): 32 bits, value = {0}. This is a
 fixed-width field for specifying the KEK index (big-endian order)
 was used to wrap (and optionally authenticate) the SEK(s). The
 value 0 is used to indicate the default key of the current stream.
 Other values are reserved for the possible use of a key management
 system in the future to retrieve a cryptographic context.

 * 0: Default stream associated key (stream/system default)

 * 1..255: Reserved for manually indexed keys

 Cipher: 8 bits, value = {0..2}. This is a fixed-width field for
 specifying encryption cipher and mode:

 * 0: None or KEKI indexed crypto context

 * 2: AES-CTR [SP800-38A]

 Authentication (Auth): 8 bits, value = {0}. This is a fixed-width
 field for specifying a message authentication code algorithm:

 * 0: None or KEKI indexed crypto context

 Stream Encapsulation (SE): 8 bits, value = {2}. This is a fixed-
 width field for describing the stream encapsulation:

 * 0: Unspecified or KEKI indexed crypto context

 * 1: MPEG-TS/UDP

 * 2: MPEG-TS/SRT

 Resv2: 8 bits, value = {0}. This is a fixed-width field reserved for
 future use.

 Resv3: 16 bits, value = {0}. This is a fixed-width field reserved
 for future use.

Sharabayko, et al. Expires 13 March 2021 [Page 19]

Internet-Draft SRT September 2020

 SLen/4: 8 bits, value = {4}. This is a fixed-width field for
 specifying salt length SLen in bytes divided by 4. Can be zero if
 no salt/IV present. The only valid length of salt defined is 128
 bits.

 KLen/4: 8 bits, value = {4,6,8}. This is a fixed-width field for
 specifying SEK length in bytes divided by 4. Size of one key even
 if two keys present. MUST match the key size specified in the
 Encryption Field of the handshake packet Table 2.

 Salt (SLen): SLen * 8 bits, value = { }. This is a variable-width
 field that complements the keying material by specifying a salt
 key.

 Wrap: (64 + n * KLen * 8) bits, value = { }. This is a variable-
 width field for specifying Wrapped key(s), where n = (KK + 1)/2
 and the size of the wrap field is ((n * KLen) + 8) bytes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + Integrity Check Vector (ICV) +
 | |
 +=+
 | xSEK |
 +=+
 | oSEK |
 +=+

 Figure 11: Unwrapped key structure

 ICV: 64 bits. 64-bit Integrity Check Vector(AES key wrap integrity).
 This field is used to detect if the keys were unwrapped properly.
 If the KEK in hand is invalid, validation fails and unwrapped keys
 are discarded.

 xSEK: variable width. This field identifies an odd or even SEK. If
 only one key is present, the bit set in the KK field tells which
 SEK is provided. If both keys are present, then this field is
 eSEK (even key) and it is followed by odd key oSEK. The length of
 this field is calculated as KLen * 8.

 oSEK: variable width. This field with the odd key is present only
 when the message carries the two SEKs (identified by he KK field).

Sharabayko, et al. Expires 13 March 2021 [Page 20]

Internet-Draft SRT September 2020

3.2.3. Keep-Alive

 Keep-alive control packets are sent after a certain timeout from the
 last time any packet (Control or Data) was sent. The purpose of this
 control packet is to notify the peer to keep the connection open when
 no data exchange is taking place.

 The default timeout for a keep-alive packet to be sent is 1 second.

 An SRT keep-alive packet is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Control Type | Reserved |
 +-+
 | Type-specific Information |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+

 Figure 12: Keep-Alive control packet

 Packet Type: 1 bit, value = 1. The packet type value of a keep-alive
 control packet is "1".

 Control Type: 15 bits, value = KEEPALIVE{0x0001}. The control type
 value of a keep-alive control packet is "1".

 Reserved: 16 bits, value = 0. This is a fixed-width field reserved
 for future use.

 Type-specific Information. This field is reserved for future
 definition.

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 Keep-alive controls packet do not contain Control Information Field
 (CIF).

Sharabayko, et al. Expires 13 March 2021 [Page 21]

Internet-Draft SRT September 2020

3.2.4. ACK (Acknowledgment)

 Acknowledgment control packets are used to provide delivery status of
 data packets. By acknowled reception of data packets up to the
 acknowledged packet sequence number the receiver notifies the sender
 that all prior packets were received or, in case of live transmission
 mode (Section 4.2.2), preceeeding missing packets if any were dropped
 as too late to be delivered.

 ACK packets may also carry some additional information from the
 receiver like RTT, bandwidth, receiving speed, etc. The CIF portion
 of the ACK control packet is expanded as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Control Type | Reserved |
 +-+
 | Acknowledgement Number |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+- CIF -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Last Acknowledged Packet Sequence Number |
 +-+
 | RTT |
 +-+
 | RTT Variance |
 +-+
 | Available Buffer Size |
 +-+
 | Packets Receiving Rate |
 +-+
 | Estimated Link Capacity |
 +-+
 | Receiving Rate |
 +-+

 Figure 13: ACK control packet

 Packet Type: 1 bit, value = 1. The packet type value of an ACK
 control packet is "1".

 Control Type: 15 bits, value = ACK{0x0002}. The control type value
 of an ACK control packet is "2".

 Reserved: 16 bits, value = 0. This is a fixed-width field reserved

Sharabayko, et al. Expires 13 March 2021 [Page 22]

Internet-Draft SRT September 2020

 for future use.

 Acknowledgement Number: 32 bits. This field contains the sequential
 number of the full acknowledgment packet starting from 1.

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 Last Acknowledged Packet Sequence Number: 32 bits. This field
 contains the sequence number of the last data packet being
 acknowledged plus one. In other words, if it the sequence number
 of the first unacknowledged packet.

 RTT: 32 bits. RTT value, in microseconds, estimated by the receiver
 based on the previous ACK-ACKACK packet exchange.

 RTT Variance: 32 bits. The variance of the RTT estimation, in
 microseconds.

 Available Buffer Size: 32 bits. Available size of the receiver’s
 buffer, in packets.

 Packets Receiving Rate: 32 bits. The rate at which packets are being
 received, in packets per second.

 Estimated Link Capacity: 32 bits. Estimated bandwidth of the link,
 in packets per second.

 Receiving Rate: 32 bits. Estimated receiving rate, in bytes per
 second.

 There are several types of ACK packets:

 * A Full ACK control packet is sent every 10 ms and has all the
 fields of Figure 13.

 * A Lite ACK control packet includes only the Last Acknowledged
 Packet Sequence Number field. The Type-specific Information field
 should be set to 0.

 * A Small ACK includes the fields up to and including the Available
 Buffer Size field. The Type-specific Information field should be
 set to 0.

 The sender only acknowledges the receipt of Full ACK packets (see
 ACKACK Section Section 3.2.7).

Sharabayko, et al. Expires 13 March 2021 [Page 23]

Internet-Draft SRT September 2020

 The Lite ACK and Small ACK packets are used in cases when the
 receiver should acknowledge received data packets more often than
 every 10 ms. This is usually needed at high data rates. It is up to
 the receiver to decide the condition and the type of ACK packet to
 send (Lite or Small). The recommendation is to send a Lite ACK for
 every 64 packets received.

3.2.5. NAK (Loss Report)

 Negative acknowledgment (NAK) control packets are used to signal
 failed data packet deliveries. The receiver notifies the sender
 about lost data packets by sending a NAK packet that contains a list
 of sequence numbers for those lost packets.

 An SRT NAK packet is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Control Type | Reserved |
 +-+
 | Type-specific Information |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+-+-+-+-+-+-+-+-+-+-+- CIF (Loss List) -+-+-+-+-+-+-+-+-+-+-+-+
 |0| Lost packet sequence number |
 +-+
 |1| Range of lost packets from sequence number |
 +-+
 |0| Up to sequence number |
 +-+
 |0| Lost packet sequence number |
 +-+

 Figure 14: NAK control packet

 Packet Type: 1 bit, value = 1. The packet type value of a NAK
 control packet is "1".

 Control Type: 15 bits, value = NAK{0x0003}. The control type value
 of a NAK control packet is "3".

 Reserved: 16 bits, value = 0. This is a fixed-width field reserved
 for future use.

 Type-specific Information: 32 bits. This field is reserved for

Sharabayko, et al. Expires 13 March 2021 [Page 24]

Internet-Draft SRT September 2020

 future definition.

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 Control Information Field (CIF). A single value or a range of lost
 packets sequence numbers. See packet sequence number coding in
 Appendix A.

3.2.6. Shutdown

 Shutdown control packets are used to initiate the closing of an SRT
 connection.

 An SRT shutdown control packet is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Control Type | Reserved |
 +-+
 | Type-specific Information |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+

 Figure 15: Shutdown control packet

 Packet Type: 1 bit, value = 1. The packet type value of a shutdown
 control packet is "1".

 Control Type: 15 bits, value = SHUTDOWN{0x0005}. The control type
 value of a shutdown control packet is "5".

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 Type-specific Information. This field is reserved for future
 definition.

 Shutdown control packets do not contain Control Information Field
 (CIF).

Sharabayko, et al. Expires 13 March 2021 [Page 25]

Internet-Draft SRT September 2020

3.2.7. ACKACK

 ACKACK control packets are sent to acknowledge the reception of a
 Full ACK, and are used in the calculation of RTT by the receiver.

 An SRT ACKACK Control packet is formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+- SRT Header +-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Control Type | Reserved |
 +-+
 | Acknowledgement Number |
 +-+
 | Timestamp |
 +-+
 | Destination Socket ID |
 +-+

 Figure 16: ACKACK control packet

 Packet Type: 1 bit, value = 1. The packet type value of an ACKACK
 control packet is "1".

 Control Type: 15 bits, value = ACKACK{0x0006}. The control type
 value of an ACKACK control packet is "6".

 Acknowledgement Number. This field contains the Acknowledgement
 Number of the full ACK packet the reception of which is being
 acknowledged by this ACKACK packet.

 Timestamp: 32 bits. See Section 3.

 Destination Socket ID: 32 bits. See Section 3.

 ACKACK control packets do not contain Control Information Field
 (CIF).

4. SRT Data Transmission and Control

 This section describes key concepts related to the handling of
 control and data packets during the transmission process.

 After the handshake and exchange of capabilities is completed, packet
 data can be sent and received over the established connection. To
 fully utilize the features of low latency and error recovery provided
 by SRT, the sender and receiver must handle control packets, timers,
 and buffers for the connection as specified in this section.

Sharabayko, et al. Expires 13 March 2021 [Page 26]

Internet-Draft SRT September 2020

4.1. Stream Multiplexing

 Multiple SRT sockets may share the same UDP socket so that the
 packets received to this UDP socket will be correctly dispatched to
 those SRT sockets they are currently destined.

 During the handshake, the parties exchange their SRT Socket IDs.
 These IDs are then used in the Destination Socket ID field of every
 control and data packet (see Section 3).

4.2. Data Transmission Modes

 SRT has been mainly created for Live Streaming and therefore its main
 and default transmission mode is "live". SRT supports, however, the
 modes that the original UDT library supported, that is, buffer and
 message transmission.

4.2.1. Message Mode

 When the STREAM flag of the handshake Extension Message
 Section 3.2.1.1 is set to 0, the protocol operates in Message mode,
 characterized as follows:

 * Every packet has its own Packet Sequence Number.

 * One or several consecutive SRT Data packets can form a message.

 * All the packets belonging to the same message have a similar
 message number set in the Message Number field.

 The first packet of a message has the first bit of the Packet
 Position Flags (Section 3.1) set to 1. The last packet of the
 message has the second bit of the Packet Position Flags set to 1.
 Thus, a PP equal to "11b" indicates a packet that forms the whole
 message. A PP equal to "00b" indicates a packet that belongs to the
 inner part of the message.

 The concept of the message in SRT comes from UDT ([GHG04b]). In this
 mode a single sending instruction passes exactly one piece of data
 that has boundaries (a message). This message may span across
 multiple UDP packets (and multiple SRT data packets). The only size
 limitation is that it shall fit as a whole in the buffers of the
 sender and the receiver. Although internally all operations (e.g.
 ACK, NAK) on data packets are performed independently, an application
 must send and receive the whole message. Until the message is
 complete (all packets are received) the application will not be
 allowed to read it.

Sharabayko, et al. Expires 13 March 2021 [Page 27]

Internet-Draft SRT September 2020

 When the Order Flag of a Data packet is set to 1, this imposes a
 sequential reading order on messages. An Order Flag set to 0 allows
 an application to read messages that are already fully available,
 before any preceding messages that may have some packets missing.

4.2.2. Live Mode

 Live mode is a special type of message mode where only data packets
 with their PP field set to "11b" are allowed.

 Additionally Timestamp-Based Packet Delivery (TSBPD) (Section 4.5)
 and Too-Late Packet Drop (Section 4.6) mechanisms are used in this
 mode.

4.2.3. Buffer Mode

 Buffer mode is negotiated during the Handshake by setting the STREAM
 flag of the handshake Extension Message Flags to 1.

 In this mode consecutive packets form one continuous stream that can
 be read, with portions of any size.

4.3. Handshake Messages

 SRT is a connection-oriented protocol. It embraces the concepts of
 "connection" and "session". The UDP system protocol is used by SRT
 for sending data and control packets.

 An SRT connection is characterized by the fact that it is:

 * first engaged by a handshake process;

 * maintained as long as any packets are being exchanged in a timely
 manner;

 * considered closed when a party receives the appropriate close
 command from its peer (connection closed by the foreign host), or
 when it receives no packets at all for some predefined time
 (connection broken on timeout).

 SRT supports two connection configurations:

 1. Caller-Listener, where one side waits for the other to initiate a
 connection

 2. Rendezvous, where both sides attempt to initiate a connection

Sharabayko, et al. Expires 13 March 2021 [Page 28]

Internet-Draft SRT September 2020

 The handshake is performed between two parties: "Initiator" and
 "Responder":

 * Initiator starts the extended SRT handshake process and sends
 appropriate SRT extended handshake requests.

 * Responder expects the SRT extended handshake requests to be sent
 by the Initiator and sends SRT extended handshake responses back.

 There are two basic types of SRT handshake extensions that are
 exchanged in the handshake:

 * Handshake Extension Message exchanges the basic SRT information;

 * Key Material Exchange exchanges the wrapped stream encryption key
 (used only if encryption is requested).

 * Stream ID extension exchanges some stream-specific information
 that can be used by the application to identify the incoming
 stream connection.

 The Initiator and Responder roles are assigned depending on the
 connection mode.

 For Caller-Listener connections: the Caller is the Initiator, the
 Listener is the Responder. For Rendezvous connections: the Initiator
 and Responder roles are assigned based on the initial data
 interchange during the handshake.

 The Handshake Type field in the Handshake Structure (see Figure 5)
 indicates the handshake message type.

 Caller-Listener handshake exchange has the following order of
 Handshake Types:

 1. Caller to Listener: INDUCTION

 2. Listener to Caller: INDUCTION (reports cookie)

 3. Caller to Listener: CONCLUSION (uses previously returned cookie)

 4. Listener to Caller: CONCLUSION (confirms connection established)

 Rendezvous handshake exchange has the following order of Handshake
 Types:

 1. After starting the connection: WAVEAHAND.

Sharabayko, et al. Expires 13 March 2021 [Page 29]

Internet-Draft SRT September 2020

 2. After receiving the above message from the peer: CONCLUSION.

 3. After receiving the above message from the peer: AGREEMENT.

 When a connection process has failed before either party can send the
 CONCLUSION handshake, the Handshake Type field will contain the
 appropriate error value for the rejected connection. See the list of
 error codes in Table 7.

 +======+================+===+
 | Code | Error | Description |
 +======+================+===+
 | 1000 | REJ_UNKNOWN | Unknown reason |
 +------+----------------+---+
 | 1001 | REJ_SYSTEM | System function error |
 +------+----------------+---+
 | 1002 | REJ_PEER | Rejected by peer |
 +------+----------------+---+
 | 1003 | REJ_RESOURCE | Resource allocation problem |
 +------+----------------+---+
 | 1004 | REJ_ROGUE | incorrect data in handshake |
 +------+----------------+---+
 | 1005 | REJ_BACKLOG | listener’s backlog exceeded |
 +------+----------------+---+
 | 1006 | REJ_IPE | internal program error |
 +------+----------------+---+
 | 1007 | REJ_CLOSE | socket is closing |
 +------+----------------+---+
 | 1008 | REJ_VERSION | peer is older version than agent’s min |
 +------+----------------+---+
 | 1009 | REJ_RDVCOOKIE | rendezvous cookie collision |
 +------+----------------+---+
 | 1010 | REJ_BADSECRET | wrong password |
 +------+----------------+---+
 | 1011 | REJ_UNSECURE | password required or unexpected |
 +------+----------------+---+
 | 1012 | REJ_MESSAGEAPI | Stream flag collision |
 +------+----------------+---+
 | 1013 | REJ_CONGESTION | incompatible congestion-controller type |
 +------+----------------+---+
 | 1014 | REJ_FILTER | incompatible packet filter |
 +------+----------------+---+
 | 1015 | REJ_GROUP | incompatible group |
 +------+----------------+---+

 Table 7: Handshake Rejection Reason Codes

Sharabayko, et al. Expires 13 March 2021 [Page 30]

Internet-Draft SRT September 2020

 The specification of the cipher family and block size is decided by
 the data Sender. When the transmission is bidirectional, this value
 MUST be agreed upon at the outset because when both are set the
 Responder wins. For Caller-Listener connections it is reasonable to
 set this value on the Listener only. In the case of Rendezvous the
 only reasonable approach is to decide upon the correct value from the
 different sources and to set it on both parties (note that *AES-128*
 is the default).

4.3.1. Caller-Listener Handshake

 This section describes the handshaking process where a Listener is
 waiting for an incoming Handshake request on a bound UDP port from a
 Caller. The process has two phases: induction and conclusion.

4.3.1.1. The Induction Phase

 The INDUCTION phase serves only to set a cookie on the Listener so
 that it doesn’t allocate resources, thus mitigating a potential DoS
 attack that might be perpetrated by flooding the Listener with
 handshake commands.

 The Caller begins by sending the INDUCTION handshake, which contains
 the following (significant) fields:

 * Version: MUST always be 4

 * Encryption Field: 0

 * Extension Field: 2

 * Handshake Type: INDUCTION

 * SRT Socket ID: SRT Socket ID of the Caller

 * SYN Cookie: 0

 The Destination Socket ID of the SRT packet header in this message is
 0, which is interpreted as a connection request.

 The handshake version number is set to 4 in this initial handshake.
 This is due to the initial design of SRT that was to be compliant
 with the UDT protocol ([GHG04b]) on which it is based.

 The Listener responds with the following:

 * Version: 5

Sharabayko, et al. Expires 13 March 2021 [Page 31]

Internet-Draft SRT September 2020

 * Encryption Field: Advertised cipher family and block size.

 * Extension Field: SRT magic code 0x4A17

 * Handshake Type: INDUCTION

 * SRT Socket ID: Socket ID of the Listener

 * SYN Cookie: a cookie that is crafted based on host, port and
 current time with 1 minute accuracy to avoid SYN flooding attack
 [RFC4987]

 At this point the Listener still does not know if the Caller is SRT
 or UDT, and it responds with the same set of values regardless of
 whether the Caller is SRT or UDT.

 If the party is SRT, it does interpret the values in Version and
 Extension Field. If it receives the value 5 in Version, it
 understands that it comes from an SRT party, so it knows that it
 should prepare the proper handshake messages phase. It also checks
 the following:

 * whether the Extension Flags contains the magic value 0x4A17;
 otherwise the connection is rejected. This is a contingency for
 the case where someone who, in an attempt to extend UDT
 independently, increases the Version value to 5 and tries to test
 it against SRT.

 * whether the Encryption Flags contain a non-zero value, which is
 interpreted as an advertised cipher family and block size.

 A legacy UDT party completely ignores the values reported in Version
 and Handshake Type. It is, however, interested in the SYN Cookie
 value, as this must be passed to the next phase. It does interpret
 these fields, but only in the "conclusion" message.

4.3.1.2. The Conclusion Phase

 Once the Caller gets the SYN cookie from the Listener, it sends the
 CONCLUSION handshake to the Listener.

 The following values are set by the compliant caller:

 * Version: 5

 * Handshake Type: CONCLUSION

 * SRT Socket ID: Socket ID of the Caller

Sharabayko, et al. Expires 13 March 2021 [Page 32]

Internet-Draft SRT September 2020

 * SYN Cookie: the cookie previously received in the induction phase

 The Destination Socket ID in this message is the socket ID that was
 previously received in the induction phase in the SRT Socket ID field
 of the handshake structure.

 * Encryption Flags: advertised cipher family and block size.

 * Extension Flags: A set of flags that define the extensions
 provided in the handshake.

 The Listener responds with the same values shown above, without the
 cookie (which is not needed here), as well as the extensions for HS
 Version 5 (which will probably be exactly the same).

 There is not any "negotiation" here. If the values passed in the
 handshake are in any way not acceptable by the other side, the
 connection will be rejected. The only case when the Listener can
 have precedence over the Caller is the advertised Cipher Family and
 Block Size (Table 2) in the Encryption Field of the Handshake.

 The value for latency is always agreed to be the greater of those
 reported by each party.

4.3.2. Rendezvous Handshake

 The Rendezvous process uses a state machine. It is slightly
 different from UDT Rendezvous handshake [GHG04b], although it is
 still based on the same message request types.

 Both parties start with WAVEAHAND and use the Version value of 5.
 Legacy Version 4 clients do not look at the Version value, whereas
 Version 5 clients can detect version 5. The parties only continue
 with the Version 5 Rendezvous process when Version is set to 5 for
 both. Otherwise the process continues exclusively according to
 Version 4 rules [GHG04b].

 With Version 5 Rendezvous, both parties create a cookie for a process
 called the "cookie contest". This is necessary for the assignment of
 Initiator and Responder roles. Each party generates a cookie value
 (a 32-bit number) based on the host, port, and current time with 1
 minute accuracy. This value is scrambled using an MD5 sum
 calculation. The cookie values are then compared with one another.

 Since it is impossible to have two sockets on the same machine bound
 to the same NIC and port and operating independently, it is virtually
 impossible that the parties will generate identical cookies.
 However, this situation may occur if an application tries to "connect

Sharabayko, et al. Expires 13 March 2021 [Page 33]

Internet-Draft SRT September 2020

 to itself" - that is, either connects to a local IP address, when the
 socket is bound to INADDR_ANY, or to the same IP address to which the
 socket was bound. If the cookies are identical (for any reason), the
 connection will not be made until new, unique cookies are generated
 (after a delay of up to one minute). In the case of an application
 "connecting to itself", the cookies will always be identical, and so
 the connection will never be established.

 When one party’s cookie value is greater than its peer’s, it wins the
 cookie contest and becomes Initiator (the other party becomes the
 Responder).

 At this point there are two possible "handshake flows": serial and
 parallel.

4.3.2.1. Serial Handshake Flow

 In the serial handshake flow, one party is always first, and the
 other follows. That is, while both parties are repeatedly sending
 WAVEAHAND messages, at some point one party - let’s say Alice - will
 find she has received a WAVEAHAND message before she can send her
 next one, so she sends a CONCLUSION message in response. Meantime,
 Bob (Alice’s peer) has missed Alice’s WAVEAHAND messages, so that
 Alice’s CONCLUSION is the first message Bob has received from her.

 This process can be described easily as a series of exchanges between
 the first and following parties (Alice and Bob, respectively):

 1. Initially, both parties are in the waving state. Alice sends a
 handshake message to Bob:

 * Version: 5

 * Type: Extension field: 0, Encryption field: advertised
 "PBKEYLEN".

 * Handshake Type: WAVEAHAND

 * SRT Socket ID: Alice’s socket ID

 * SYN Cookie: Created based on host/port and current time.

 While Alice does not yet know if she is sending this message to a
 Version 4 or Version 5 peer, the values from these fields would not
 be interpreted by the Version 4 peer when the Handshake Type is
 WAVEAHAND.

Sharabayko, et al. Expires 13 March 2021 [Page 34]

Internet-Draft SRT September 2020

 1. Bob receives Alice’s WAVEAHAND message, switches to the
 "attention" state. Since Bob now knows Alice’s cookie, he
 performs a "cookie contest" (compares both cookie values). If
 Bob’s cookie is greater than Alice’s, he will become the
 Initiator. Otherwise, he will become the Responder.

 The resolution of the Handshake Role (Initiator or Responder) is
 essential for further processing.

 Then Bob responds:

 * Version: 5

 * Extension field: appropriate flags if Initiator, otherwise 0

 * Encryption field: advertised PBKEYLEN

 * Handshake Type: CONCLUSION

 If Bob is the Initiator and encryption is on, he will use either his
 own cipher family and block size or the one received from Alice (if
 she has advertised those values).

 1. Alice receives Bob’s CONCLUSION message. While at this point she
 also performs the "cookie contest", the outcome will be the same.
 She switches to the "fine" state, and sends:

 * Version: 5

 * Appropriate extension flags and encryption flags

 * Handshake Type: CONCLUSION

 Both parties always send extension flags at this point, which will
 contain HSREQ if the message comes from an Initiator, or HSRSP if it
 comes from a Responder. If the Initiator has received a previous
 message from the Responder containing an advertised cipher family and
 block size in the encryption flags field, it will be used as the key
 length for key generation sent next in the KMREQ extension.

 1. Bob receives Alice’s CONCLUSION message, and then does one of the
 following (depending on Bob’s role):

 * If Bob is the Initiator (Alice’s message contains HSRSP), he:

 - switches to the "connected" state

Sharabayko, et al. Expires 13 March 2021 [Page 35]

Internet-Draft SRT September 2020

 - sends Alice a message with Handshake Type AGREEMENT, but
 containing no SRT extensions (Extension Flags field should
 be 0)

 * If Bob is the Responder (Alice’s message contains HSREQ), he:

 - switches to "initiated" state

 - sends Alice a message with Handshake Type CONCLUSION that
 also contains extensions with HSRSP

 o awaits a confirmation from Alice that she is also
 connected (preferably by AGREEMENT message)

 2. Alice receives the above message, enters into the "connected"
 state, and then does one of the following (depending on Alice’s
 role):

 * If Alice is the Initiator (received CONCLUSION with HSRSP),
 she sends Bob a message with Handshake Type = AGREEMENT.

 * If Alice is the Responder, the received message has Handshake
 Type AGREEMENT and in response she does nothing.

 3. At this point, if Bob was Initiator, he is connected already. If
 he was a Responder, he should receive the above AGREEMENT
 message, after which he switches to the "connected" state. In
 the case where the UDP packet with the agreement message gets
 lost, Bob will still enter the "connected" state once he receives
 anything else from Alice. If Bob is going to send, however, he
 has to continue sending the same CONCLUSION until he gets the
 confirmation from Alice.

4.3.2.2. Parallel Handshake Flow

 The chances of the parallel handshake flow are very low, but still it
 may occur if the handshake messages with WAVEAHAND are sent and
 received by both peers at precisely the same time.

 The resulting flow is very much like Bob’s behaviour in the serial
 handshake flow, but for both parties. Alice and Bob will go through
 the same state transitions:

 Waving -> Attention -> Initiated -> Connected

 In the Attention state they know each other’s cookies, so they can
 assign roles. In contrast to serial flows, which are mostly based on
 request-response cycles, here everything happens completely

Sharabayko, et al. Expires 13 March 2021 [Page 36]

Internet-Draft SRT September 2020

 asynchronously: the state switches upon reception of a particular
 handshake message with appropriate contents (the Initiator MUST
 attach the HSREQ extension, and Responder MUST attach the "HSRSP"
 extension).

 Here’s how the parallel handshake flow works, based on roles:

 Initiator:

 1. Waving

 * Receives WAVEAHAND message

 * Switches to Attention

 * Sends CONCLUSION + HSREQ

 2. Attention

 * Receives CONCLUSION message, which:

 - contains no extensions:

 o switches to Initiated, still sends CONCLUSION + HSREQ

 - contains "HSRSP" extension:

 o switches to Connected, sends AGREEMENT

 3. Initiated

 * Receives CONCLUSION message, which:

 - Contains no extensions:

 o REMAINS IN THIS STATE, still sends CONCLUSION + HSREQ

 - contains "HSRSP" extension:

 o switches to Connected, sends AGREEMENT

 4. Connected

 * May receive CONCLUSION and respond with AGREEMENT, but
 normally by now it should already have received payload
 packets.

 Responder:

Sharabayko, et al. Expires 13 March 2021 [Page 37]

Internet-Draft SRT September 2020

 1. Waving

 * Receives WAVEAHAND message

 * Switches to Attention

 * Sends CONCLUSION message (with no extensions)

 2. Attention

 * Receives CONCLUSION message with HSREQ. This message might
 contain no extensions, in which case the party shall simply
 send the empty CONCLUSION message, as before, and remain in
 this state.

 * Switches to Initiated and sends CONCLUSION message with HSRSP

 3. Initiated

 * Receives:

 - CONCLUSION message with HSREQ

 o responds with CONCLUSION with HSRSP and remains in this
 state

 - AGREEMENT message

 o responds with AGREEMENT and switches to Connected

 - Payload packet

 o responds with AGREEMENT and switches to Connected

 4. Connected

 * Is not expecting to receive any handshake messages anymore.
 The AGREEMENT message is always sent only once or per every
 final CONCLUSION message.

 Note that any of these packets may be missing, and the sending party
 will never become aware. The missing packet problem is resolved this
 way:

 1. If the Responder misses the CONCLUSION + HSREQ message, it simply
 continues sending empty CONCLUSION messages. Only upon reception
 of CONCLUSION + HSREQ does it respond with CONCLUSION + HSRSP.

Sharabayko, et al. Expires 13 March 2021 [Page 38]

Internet-Draft SRT September 2020

 2. If the Initiator misses the CONCLUSION + HSRSP response from the
 Responder, it continues sending CONCLUSION + HSREQ. The
 Responder MUST always respond with CONCLUSION + HSRSP when the
 Initiator sends CONCLUSION + HSREQ, even if it has already
 received and interpreted it.

 3. When the Initiator switches to the Connected state it responds
 with a AGREEMENT message, which may be missed by the Responder.
 Nonetheless, the Initiator may start sending data packets because
 it considers itself connected - it does not know that the
 Responder has not yet switched to the Connected state. Therefore
 it is exceptionally allowed that when the Responder is in the
 Initiated state and receives a data packet (or any control packet
 that is normally sent only between connected parties) over this
 connection, it may switch to the Connected state just as if it
 had received a AGREEMENT message.

 4. If the the Initiator has already switched to the Connected state
 it will not bother the Responder with any more handshake
 messages. But the Responder may be completely unaware of that
 (having missed the AGREEMENT message from the Initiator).
 Therefore it does not exit the connecting state, which means that
 it continues sending CONCLUSION + HSRSP messages until it
 receives any packet that will make it switch to the Connected
 state (normally AGREEMENT). Only then does it exit the
 connecting state and the application can start transmission.

4.4. SRT Buffer Latency

 The SRT sender and receiver have buffers to store packets.

 On the sender, latency is the time that SRT holds a packet to give it
 a chance to be delivered successfully while maintaining the rate of
 the sender at the receiver. If an acknowledgment (ACK) is missing or
 late for more than the configured latency, the packet is dropped from
 the sender buffer. A packet can be retransmitted as long as it
 remains in the buffer for the duration of the latency window. On the
 receiver, packets are delivered to an application from a buffer after
 the latency interval has passed. This helps to recover from
 potential packet losses. See Section 4.5, Section 4.6 for details.

 Latency is a value, in milliseconds, that can cover the time to
 transmit hundreds or even thousands of packets at high bitrate.
 Latency can be thought of as a window that slides over time, during
 which a number of activities take place, such as the reporting of
 acknowledged packets (ACKs) (Section 4.8.1) and unacknowledged
 packets (NAKs)(Section 4.8.2).

Sharabayko, et al. Expires 13 March 2021 [Page 39]

Internet-Draft SRT September 2020

 Latency is configured through the exchange of capabilities during the
 extended handshake process between initiator and responder. The
 Handshake Extension Message (Section 3.2.1.1) has TSBPD delay
 information, in milliseconds, from the SRT receiver and sender. The
 latency for a connection will be established as the maximum value of
 latencies proposed by the initiator and responder.

4.5. Timestamp-Based Packet Delivery

 The goal of the SRT Timestamp-Based Packet Delivery (TSBPD) mechanism
 is to reproduce the output of the sending application (e.g., encoder)
 at the input of the receiving application (e.g., decoder) in live
 data transmission mode (see Section 4.2). It attempts to reproduce
 the timing of packets committed by the sending application to the SRT
 sender. This allows packets to be scheduled for delivery by the SRT
 receiver, making them ready to be read by the receiving application
 (see Figure 17).

 The SRT receiver, using the timestamp of the SRT data packet header,
 delivers packets to a receiving application with a fixed minimum
 delay from the time the packet was scheduled for sending on the SRT
 sender side. Basically, the sender timestamp in the received packet
 is adjusted to the receiver’s local time (compensating for the time
 drift or different time zones) before releasing the packet to the
 application. Packets can be withheld by the SRT receiver for a
 configured receiver delay. A higher delay can accommodate a larger
 uniform packet drop rate, or a larger packet burst drop. Packets
 received after their "play time" are dropped if the Too-Late Packet
 Drop feature is enabled (see Section 4.6).

 The packet timestamp, in microseconds, is relative to the SRT
 connection creation time. Packets are inserted based on the sequence
 number in the header field. The origin time, in microseconds, of the
 packet is already sampled when a packet is first submitted by the
 application to the SRT sender unless explicitly provided. The TSBPD
 feature uses this time to stamp the packet for first transmission and
 any subsequent retransmission. This timestamp and the configured SRT
 latency (Section 4.4) control the recovery buffer size and the
 instant that packets are delivered at the destination (the
 aforementioned "play time" which is decided by adding the timestamp
 to the configured latency).

 It is worth mentioning that the use of the packet sending time to
 stamp the packets is inappropriate for the TSBPD feature, since a new
 time (current sending time) is used for retransmitted packets,
 putting them out of order when inserted at their proper place in the
 stream.

Sharabayko, et al. Expires 13 March 2021 [Page 40]

Internet-Draft SRT September 2020

 Figure 17 illustrates the key latency points during the packet
 transmission with the TSBPD feature enabled.

 | Sending | | |
 | Delay | ˜RTT/2 | SRT Latency |
 |<--------->|<------------>|<----------------->|
 | | | |
 | | | |
 | | | |
 ___ Scheduled Sent Received Scheduled
 / for sending | | for delivery
 Packet | | | |
 State | | | |
 | | | |
 | | | |
 --->
 Time

 Figure 17: Key Latency Points during the Packet Transmission

 The main packet states shown in Figure 17 are the following:

 * "Scheduled for sending": the packet is committed by the sending
 application, stamped and ready to be sent;

 * "Sent": the packet is passed to the UDP socket and sent;

 * "Received": the packet is received and read from the UDP socket;

 * "Scheduled for delivery": the packet is scheduled for the delivery
 and ready to be read by the receiving application.

 It is worth noting that the round-trip time (RTT) of an SRT link may
 vary in time. However the actual end-to-end latency on the link
 becomes fixed and is approximately equal to (RTT_0/2 + SRT Latency)
 once the SRT handshake exchange happens, where RTT_0 is the actual
 value of the round-trip time during the SRT handshake exchange (the
 value of the round-trip time once the SRT connection has been
 established).

 The value of sending delay depends on the hardware performance.
 Usually it is relatively small (several microseconds) in contrast to
 RTT_0/2 and SRT latency which are measured in milliseconds.

Sharabayko, et al. Expires 13 March 2021 [Page 41]

Internet-Draft SRT September 2020

4.5.1. Packet Delivery Time

 Packet delivery time is the moment, estimated by the receiver, when a
 packet should be delivered to the upstream application. The
 calculation of packet delivery time (PktTsbpdTime) is performed upon
 receiving a data packet according to the following formula:

 PktTsbpdTime = TsbpdTimeBase + PKT_TIMESTAMP + TsbpdDelay + Drift

 where

 * TsbpdTimeBase is the time base that reflects the time difference
 between local clock of the receiver and the clock used by the
 sender to timestamp packets being sent (see Section 4.5.1.1);

 * PKT_TIMESTAMP is the data packet timestamp, in microseconds;

 * TsbpdDelay is the receiver’s buffer delay (or receiver’s buffer
 latency, or SRT Latency). This is the time, in milliseconds, that
 SRT holds a packet from the moment it has been received till the
 time it should be delivered to the upstream application;

 * Drift is the time drift used to adjust the fluctuations between
 sender and receiver clock, in microseconds.

 SRT Latency (TsbpdDelay) should be a buffer time large enough to
 cover the unexpectedly extended RTT time, and the time needed to
 retransmit the lost packet. The value of minimum TsbpdDelay is
 negotiated during the SRT handshake exchange and is equal to 120
 milliseconds. The recommended value of TsbpdDelay is 3-4 times RTT.

 It is worth noting that TsbpdDelay limits the number of packet
 retransmissions to a certain extent making impossible to retransmit
 packets endlessly. This is important for live data transmission.

4.5.1.1. TSBPD Time Base Calculation

 The initial value of TSBPD time base (TsbpdTimeBase) is calculated at
 the moment of the second handshake request is received as follows:

 TsbpdTimeBase = T_NOW - HSREQ_TIMESTAMP

 where T_NOW is the current time according to the receiver clock;
 HSREQ_TIMESTAMP is the handshake packet timestamp, in microseconds.

 The value of TsbpdTimeBase is approximately equal to the initial one-
 way delay of the link RTT_0/2, where RTT_0 is the actual value of the
 round-trip time during the SRT handshake exchange.

Sharabayko, et al. Expires 13 March 2021 [Page 42]

Internet-Draft SRT September 2020

 During the transmission process, the value of TSBPD time base may be
 adjusted in two cases:

 1. During the TSBPD wrapping period. The TSBPD wrapping period
 happens every 01:11:35 hours. This time corresponds to the
 maximum timestamp value of a packet (MAX_TIMESTAMP).
 MAX_TIMESTAMP is equal to 0xFFFFFFFF, or the maximum value of
 32-bit unsigned integer, in microseconds (Section 3). The TSBPD
 wrapping period starts 30 seconds before reaching the maximum
 timestamp value of a packet and ends once the packet with
 timestamp within (30, 60) seconds interval is delivered (read
 from the buffer). The updated value of TsbpdTimeBase will be
 recalculated as follows:

 TsbpdTimeBase = TsbpdTimeBase + MAX_TIMESTAMP + 1

 2. By drift tracer. See Section 4.7 for details.

4.6. Too-Late Packet Drop

 The Too-Late Packet Drop (TLPKTDROP) mechanism allows the sender to
 drop packets that have no chance to be delivered in time, and allows
 the receiver to skip missing packets that have not been delivered in
 time. The timeout of dropping a packet is based on the TSBPD
 mechanism (see Section 4.5).

 In the SRT, when Too-Late Packet Drop is enabled, and a packet
 timestamp is older than 125% of the SRT latency, it is considered too
 late to be delivered and may be dropped by the sender. However, the
 sender keeps packets for at least 1 second in case the SRT latency is
 not enough for a large RTT (that is, if 125% of the SRT latency is
 less than 1 second).

 When enabled on the receiver, the receiver drops packets that have
 not been delivered or retransmitted in time, and delivers the
 subsequent packets to the application when it is their time to play.

 In pseudo-code, the algorithm of reading from the receiver buffer is
 the following:

Sharabayko, et al. Expires 13 March 2021 [Page 43]

Internet-Draft SRT September 2020

 <CODE BEGINS>
 pos = 0; /* Current receiver buffer position */
 i = 0; /* Position of the next available in the receiver buffer
 packet relatively to the current buffer position pos */

 while(True) {
 // Get the position i of the next available packet
 // in the receiver buffer
 i = next_avail();
 // Calculate packet delivery time PktTsbpdTime
 // for the next available packet
 PktTsbpdTime = delivery_time(i);

 if T_NOW < PktTsbpdTime:
 continue;

 Drop packets which buffer position number is less than i;

 Deliver packet with the buffer position i;

 pos = i + 1;
 }
 <CODE ENDS>

 where T_NOW is the current time according to the receiver clock.

 The TLPKTDROP mechanism can be turned off to always ensure a clean
 delivery. However, a lost packet can simply pause a delivery for
 some longer, potentially undefined time, and cause even worse tearing
 for the player. Setting higher SRT latency will help much more in
 the case when TLPKTDROP causes packet drops too often.

4.7. Drift Management

 When the sender enters "connected" status it tells the application
 there is a socket interface that is transmitter-ready. At this point
 the application can start sending data packets. It adds packets to
 the SRT sender’s buffer at a certain input rate, from which they are
 transmitted to the receiver at scheduled times.

Sharabayko, et al. Expires 13 March 2021 [Page 44]

Internet-Draft SRT September 2020

 A synchronized time is required to keep proper sender/receiver buffer
 levels, taking into account the time zone and round-trip time (up to
 2 seconds for satellite links). Considering addition/subtraction
 round-off, and possibly unsynchronized system times, an agreed-upon
 time base drifts by a few microseconds every minute. The drift may
 accumulate over many days to a point where the sender or receiver
 buffers will overflow or deplete, seriously affecting the quality of
 the video. SRT has a time management mechanism to compensate for
 this drift.

 When a packet is received, SRT determines the difference between the
 time it was expected and its timestamp. The timestamp is calculated
 on the receiver side. The RTT tells the receiver how much time it
 was supposed to take. SRT maintains a reference between the time at
 the leading edge of the send buffer’s latency window and the
 corresponding time on the receiver (the present time). This allows
 to convert packet timestamp to the local receiver time. Based on
 this time, various events (packet delivery, etc.) can be scheduled.

 The receiver samples time drift data and periodically calculates a
 packet timestamp correction factor, which is applied to each data
 packet received by adjusting the inter-packet interval. When a
 packet is received it is not given right away to the application. As
 time advances, the receiver knows the expected time for any missing
 or dropped packet, and can use this information to fill any "holes"
 in the receive queue with another packet (see Section 4.5).

 It is worth noting that the period of sampling time drift data is
 based on a number of packets rather than time duration to ensure
 enough samples, independently of the media stream packet rate. The
 effect of network jitter on the estimated time drift is attenuated by
 using a large number of samples. The actual time drift being very
 slow (affecting a stream only after many hours) does not require a
 fast reaction.

 The receiver uses local time to be able to schedule events -- to
 determine, for example, if it is time to deliver a certain packet
 right away. The timestamps in the packets themselves are just
 references to the beginning of the session. When a packet is
 received (with a timestamp from the sender), the receiver makes a
 reference to the beginning of the session to recalculate its
 timestamp. The start time is derived from the local time at the
 moment that the session is connected. A packet timestamp equals
 "now" minus "StartTime", where the latter is the point in time when
 the socket was created.

Sharabayko, et al. Expires 13 March 2021 [Page 45]

Internet-Draft SRT September 2020

4.8. Acknowledgement and Lost Packet Handling

 To enable the Automatic Repeat reQuest of data packet
 retransmissions, a sender stores all sent data packets in its buffer.

 The SRT receiver periodically sends acknowledgments (ACKs) for the
 received data packets so that the SRT sender can remove the
 acknowledged packets from its buffer (Section 4.8.1). Once the
 acknowledged packets are removed, their retransmission is no longer
 possible and presumably not needed.

 Upon receiving the full acknowledgment (ACK) control packet, the SRT
 sender should acknowledge its reception to the receiver by sending an
 ACKACK control packet with the sequence number of the full ACK packet
 being acknowledged.

 The SRT receiver also sends NAK control packets to notify the sender
 about the missing packets (Section 4.8.2). The sending of a NAK
 packet can be triggered immediately after a gap in sequence numbers
 of data packets is detected. In addition, a Periodic NAK report
 mechanism can be used to send NAK reports periodically. The NAK
 packet in that case will list all the packets that the receiver
 considers being lost up to the moment the Periodic NAK report is
 sent.

 Upon reception of the NAK packet, the SRT sender prioritizes
 retransmissions of lost packets over the regular data packets to be
 transmitted for the first time.

 The retransmission of the missing packet is repeated until the
 receiver acknowledges its receipt, or if both peers agree to drop
 this packet (see Section 4.6).

4.8.1. Packet Acknowledgement (ACKs, ACKACKs)

 At certain intervals (see below), the SRT receiver sends an
 acknowledgment (ACK) that causes the acknowledged packets to be
 removed from the SRT sender’s buffer.

 An ACK control packet contains the sequence number of the packet
 immediately following the latest in the list of received packets.
 Where no packet loss has occurred up to the packet with sequence
 number n, an ACK would include the sequence number (n + 1).

 An ACK (from a receiver) will trigger the transmission of an ACKACK
 (by the sender), with almost no delay. The time it takes for an ACK
 to be sent and an ACKACK to be received is the RTT. The ACKACK tells
 the receiver to stop sending the ACK position because the sender

Sharabayko, et al. Expires 13 March 2021 [Page 46]

Internet-Draft SRT September 2020

 already knows it. Otherwise, ACKs (with outdated information) would
 continue to be sent regularly. Similarly, if the sender does not
 receive an ACK, it does not stop transmitting.

 There are two conditions for sending an acknowledgment. A full ACK
 is based on a timer of 10 milliseconds (the ACK period or
 synchronization time interval SYN). For high bitrate transmissions,
 a "light ACK" can be sent, which is an ACK for a sequence of packets.
 In a 10 milliseconds interval, there are often so many packets being
 sent and received that the ACK position on the sender does not
 advance quickly enough. To mitigate this, after 64 packets (even if
 the ACK period has not fully elapsed) the receiver sends a light ACK.
 A light ACK is a shorter ACK (SRT header and one 32-bit field). It
 does not trigger an ACKACK.

 When a receiver encounters the situation where the next packet to be
 played was not successfully received from the sender, it will "skip"
 this packet (see Section 4.6) and send a fake ACK. To the sender,
 this fake ACK is a real ACK, and so it just behaves as if the packet
 had been received. This facilitates the synchronization between SRT
 sender and receiver. The fact that a packet was skipped remains
 unknown by the sender. Skipped packets are recorded in the
 statistics on the SRT receiver.

4.8.2. Packet Retransmission (NAKs)

 The SRT receiver sends NAK control packets to notify the sender about
 the missing packets. The NAK packet sending can be triggered
 immediately after a gap in sequence numbers of data packets is
 detected.

 Upon reception of the NAK packet, the SRT sender prioritizes
 retransmissions of lost packets over the regular data packets to be
 transmitted for the first time.

 The SRT sender maintains a list of lost packets (loss list) that is
 built from NAK reports. When scheduling packet transmission, it
 looks to see if a packet in the loss list has priority and sends it
 if so. Otherwise, it sends the next packet scheduled for the first
 transmission list. Note that when a packet is transmitted, it stays
 in the buffer in case it is not received by the SRT receiver.

 NAK packets are processed to fill in the loss list. As the latency
 window advances and packets are dropped from the sending queue, a
 check is performed to see if any of the dropped or resent packets are
 in the loss list, to determine if they can be removed from there as
 well so that they are not retransmitted unnecessarily.

Sharabayko, et al. Expires 13 March 2021 [Page 47]

Internet-Draft SRT September 2020

 There is a counter for the packets that are resent. If there is no
 ACK for a packet, it will stay in the loss list and can be resent
 more than once. Packets in the loss list are prioritized.

 If packets in the loss list continue to block the send queue, at some
 point this will cause the send queue to fill. When the send queue is
 full, the sender will begin to drop packets without even sending them
 the first time. An encoder (or other application) may continue to
 provide packets, but there’s no place for them, so they will end up
 being thrown away.

 This condition where packets are unsent does not happen often. There
 is a maximum number of packets held in the send buffer based on the
 configured latency. Older packets that have no chance to be
 retransmitted and played in time are dropped, making room for newer
 real-time packets produced by the sending application. See
 Section 4.5, Section 4.6 for details.

 In addition to the regular NAKs, the Periodic NAK report mechanism
 can be used to send NAK reports periodically. The NAK packet in that
 case will have all the packets that the receiver considers being lost
 at the time of sending the Periodic NAK report.

 SRT Periodic NAK reports are sent with a period of (RTT + 4 * RTTVar)
 / 2 (so called NAKInterval), with a 20 milliseconds floor, where RTT
 and RTTVar are defined in section Section 4.10. A NAK control packet
 contains a compressed list of the lost packets. Therefore, only lost
 packets are retransmitted. By using NAKInterval for the NAK reports
 period, it may happen that lost packets are retransmitted more than
 once, but it helps maintain low latency in the case where NAK packets
 are lost.

 An ACKACK tells the receiver to stop sending the ACK position because
 the sender already knows it. Otherwise, ACKs (with outdated
 information) would continue to be sent regularly.

 An ACK serves as a ping, with a corresponding ACKACK pong, to measure
 RTT. The time it takes for an ACK to be sent and an ACKACK to be
 received is the RTT. Each ACK has a number. A corresponding ACKACK
 has that same number. The receiver keeps a list of all ACKs in a
 queue to match them. Unlike a full ACK, which contains the current
 RTT and several other values in the Control Information Field (CIF)
 (Section 3.2.4), a light ACK just contains the sequence number. All
 control messages are sent directly and processed upon reception, but
 ACKACK processing time is negligible (the time this takes is included
 in the round-trip time).

Sharabayko, et al. Expires 13 March 2021 [Page 48]

Internet-Draft SRT September 2020

4.9. Bidirectional Transmission Queues

 Once an SRT connection is established, both peers can send data
 packets simultaneously.

4.10. Round-Trip Time Estimation

 Round-trip time (RTT) in SRT is estimated during the transmission of
 data packets based on a difference in time between an ACK packet is
 sent out and a corresponding ACKACK packet is received back by the
 SRT receiver.

 An ACK sent by the receiver triggers an ACKACK from the sender with
 minimal processing delay. The ACKACK response is expected to arrive
 at the receiver roughly one RTT after the corresponding ACK was sent.

 The SRT receiver records the time when an ACK is sent out. The ACK
 carries a unique sequence number (independent of the data packet
 sequence number). The corresponding ACKACK also carries the same
 sequence number. Upon receiving the ACKACK, SRT calculates the RTT
 by comparing the difference between the ACKACK arrival time and the
 ACK departure time. In the following formula, RTT is the current
 value that the receiver maintains and rtt is the recent value that
 was just calculated from an ACK/ACKACK pair:

 RTT = RTT * 0.875 + rtt * 0.125

 RTT variance RTTVar is obtained as follows:

 RTTVar = RTTVar * 0.75 + abs(RTT - rtt) * 0.25

 where abs() means an absolute value.

 Both RTT and RTTVar are measured in microseconds. The initial value
 of RTT is 100 milliseconds, RTTVar is 50 milliseconds.

 The smoothed RTT calculated by the receiver as well as the RTT
 variance RTTVar are sent with the next full acknowledgement packet
 (see Section 3.2.4). Note that the first ACK in an SRT session might
 contain an initial RTT value of 100 milliseconds, because the early
 calculations may not be precise.

 The sender always gets the RTT from the receiver. It does not have
 an analog to the ACK/ACKACK mechanism, i.e. it can not send a message
 that guarantees an immediate return without processing. Upon an ACK
 reception, the SRT sender updates its own RTT and RTTVar values using
 the same formulas as above, in which case rtt is the most recent
 value it receives, i.e., carried by an incoming ACK.

Sharabayko, et al. Expires 13 March 2021 [Page 49]

Internet-Draft SRT September 2020

 Note that an SRT socket can both send and receive data packets. RTT
 and RTTVar are updated by the socket based on algorithms for the
 sender (using ACK packets) and for the receiver (using ACK-ACKACK
 pairs). When an SRT socket receives data, it updates its local RTT
 and RTTVar, which can be used for its own sender as well.

4.11. Congestion Control

 SRT provides certain mechanisms for the sender to get some feedback
 from the receiving side through the ACK packets (Section 3.2.4).
 Every 10 ms the sender receives the latest values of RTT and RTT
 variance, Available Buffer Size, Packets Receiving Rate and Estimated
 Link Capacity. Upon reception of the NAK packet (Section 3.2.5) the
 sender can detect packet losses during the transmission. These
 mechanisms provide a solid background for various congestion control
 algorithms.

 Given that SRT can operate in live and file transfer modes, there are
 two groups of congestion control algorithms possible.

 For live transmission mode (Section 4.2.2) the congestion control
 algorithm does not need to control the sending pace of the data
 packets, as the sending timing is provided by the live input.
 Although certain limitations on the minimal inter-sending time of
 consecutive packets can be applied in order to avoid congestion
 during fluctuations of the source bitrate. Also it is allowed to
 drop those packets that can not be delivered in time.

 For file transfer, any known File Congestion Control algorithms like
 CUBIC [RFC8312] and BBR [BBR] can apply, including the congestion
 control mechanism proposed in UDT [GHG04b], [GuAnAO]. The UDT
 congestion control relies on the available link capacity, packet loss
 reports (NAK) and packet acknowledgements (ACKs). It then slows down
 the output of packets as needed by adjusting the packet sending pace.
 In periods of congestion, it can block the main stream and focus on
 the lost packets.

5. Encryption

 This section describes the encryption mechanism that protects the
 payload of SRT streams. Based on standard cryptographic algorithms,
 the mechanism allows an efficient stream cipher with a key
 establishment method.

Sharabayko, et al. Expires 13 March 2021 [Page 50]

Internet-Draft SRT September 2020

5.1. Overview

 SRT implements encryption using AES [AES] in counter mode (AES-CTR)
 [SP800-38A] with a short-lived key to encrypt and decrypt the media
 stream. The AES-CTR cipher is suitable for continuous stream
 encryption that permits decryption from any point, without access to
 start of the stream (random access), and for the same reason
 tolerates packet loss. It also offers strong confidentiality when
 the counter is managed properly.

5.1.1. Encryption Scope

 SRT encrypts only the payload of SRT data packets (Section 3.1),
 while the header is left unencrypted. The unencrypted header
 contains the Packet Sequence Number field used to keep the
 synchronization of the cipher counter between the encrypting sender
 and the decrypting receiver. No constraints apply to the payload of
 SRT data packets as no padding of the payload is required by counter
 mode ciphers.

5.1.2. AES Counter

 The counter for AES-CTR is the size of the cipher’s block, i.e. 128
 bits. It is derived from a 128-bit sequence consisting of

 * a block counter in the least significant 16 bits, which counts the
 blocks in a packet,

 * a packet index - based on the packet sequence number in the SRT
 header - in the next 32 bits,

 * eighty zeroed bits.

 The upper 112 bits of this sequence are XORed with an Initialization
 Vector (IV) to produce a unique counter for each crypto block. The
 IV is derived from the Salt provided in the Keying Material
 (Section 3.2.2):

 IV = MSB(112, Salt): Most significant 112 bits of the salt.

5.1.3. Stream Encrypting Key (SEK)

 The key used for AES-CTR encryption is called the "Stream Encrypting
 Key" (SEK). It is used for up to 2^25 packets with further rekeying.
 The short-lived SEK is generated by the sender using a pseudo-random
 number generator (PRNG), and transmitted within the stream, wrapped
 with another longer-term key, the Key Encrypting Key (KEK), using a
 known AES key wrap protocol.

Sharabayko, et al. Expires 13 March 2021 [Page 51]

Internet-Draft SRT September 2020

 For connection-oriented transport such as SRT, there is no need to
 periodically transmit the short-lived key since no additional party
 can join a stream in progress. The keying material is transmitted
 within the connection handshake packets, and for a short period when
 rekeying occurs.

5.1.4. Key Encrypting Key (KEK)

 The Key Encrypting Key (KEK) is derived from a secret (passphrase)
 shared between the sender and the receiver. The KEK provides access
 to the Stream Encrypting Key, which in turn provides access to the
 protected payload of SRT data packets. The KEK has to be at least as
 long as the SEK.

 The KEK is generated by a password-based key generation function
 (PBKDF2) [RFC2898], using the passphrase, a number of iterations
 (2048), a keyed-hash (HMAC-SHA1) [RFC2104], and a key length value
 (KLen). The PBKDF2 function hashes the passphrase to make a long
 string, by repetition or padding. The number of iterations is based
 on how much time can be given to the process without it becoming
 disruptive.

5.1.5. Key Material Exchange

 The KEK is used to generate a wrap [RFC3394] that is put in a key
 material (KM) message by the initiator of a connection (i.e. caller
 in caller-listener handshake and initiator in the rendezvous
 handshake, see Section 4.3) to send to the responder (listener). The
 KM message contains the key length, the salt (one of the arguments
 provided to the PBKDF2 function), the protocol being used (e.g. AES-
 256) and the AES counter (which will eventually change, see
 Section 5.1.6).

 On the other side, the responder attempts to decode the wrap to
 obtain the Stream Encrypting Key. In the protocol for the wrap there
 is a padding, which is a known template, so the responder knows from
 the KM that it has the right KEK to decode the SEK. The SEK
 (generated and transmitted by the initiator) is random, and cannot be
 known in advance. The KEK formula is calculated on both sides, with
 the difference that the responder gets the key length (KLen) from the
 initiator via the key material (KM). It is the initiator who decides
 on the configured length. The responder obtains it from the material
 sent by the initiator.

 The responder returns the same KM message to show that it has the
 same information as the initiator, and that the encoded material will
 be decrypted. If the responder does not return this status, this
 means that it does not have the SEK. All incoming encrypted packets

Sharabayko, et al. Expires 13 March 2021 [Page 52]

Internet-Draft SRT September 2020

 received by the responder will be lost (undecrypted). Even if they
 are transmitted successfully, the receiver will be unable to decrypt
 them, and so packets will be dropped. All data packets coming from
 responder will be unencrypted.

5.1.6. KM Refresh

 The short lived SEK is regenerated for cryptographic reasons when a
 pre-determined number of packets has been encrypted. The KM refresh
 period is determined by the implementation. The receiver knows which
 SEK (odd or even) was used to encrypt the packet by means of the KK
 field of the SRT Data Packet (Section 3.1).

 There are two variables used to determine the KM Refresh timing:

 * KM Refresh Period specifies the number of packets to be sent
 before switching to the new SEK,

 * KM Pre-Announcement Period specifies when a new key is announced
 in a number of packets before key switchover. The same value is
 used to determine when to decommission the old key after
 switchover.

 The recommended KM Refresh Period is after 2^25 packets encrypted
 with the same SEK are sent. The recommended KM Pre-Announcement
 Period is 4000 packets (i.e. a new key is generated, wrapped, and
 sent at 2^25 minus 4000 packets; the old key is decommissioned at
 2^25 plus 4000 packets).

 Even and odd keys are alternated during transmission the following
 way. The packets with the earlier key #1 (let it be the odd key)
 will continue to be sent. The receiver will receive the new key #2
 (even), then decrypt and unwrap it. The receiver will reply to the
 sender if it is able to understand. Once the sender gets to the
 2^25th packet using the odd key (key #1), it will then start to send
 packets with the even key (key #2), knowing that the receiver has
 what it needs to decrypt them. This happens transparently, from one
 packet to the next. At 2^25 plus 4000 packets the first key will be
 decommissioned automatically.

 Both keys live in parallel for two times the Pre-Announcement Period
 (e.g. 4000 packets before the key switch, and 4000 packets after).
 This is to allow for packet retransmission. It is possible for
 packets with the older key to arrive at the receiver a bit late.
 Each packet contains a description of which key it requires, so the
 receiver will still have the ability to decrypt it.

Sharabayko, et al. Expires 13 March 2021 [Page 53]

Internet-Draft SRT September 2020

5.2. Encryption Process

5.2.1. Generating the Stream Encrypting Key

 On the sending side SEK, Salt and KEK are generated the following
 way:

 SEK = PRNG(KLen)
 Salt = PRNG(128)
 KEK = PBKDF2(passphrase, LSB(64,Salt), Iter, Klen)

 where

 * PBKDF2 is the PKCS#5 Password Based Key Derivation Function
 [RFC2898],

 * passphrase is the pre-shared passphrase,

 * Salt is the field of the KM message,

 * LSB(n, v) is the function taking n least significant bits of v,

 * Iter=2048 defines the number of iterations for PBKDF2,

 * KLen is the field of the KM message.

 Wrap = AESkw(KEK, SEK)

 where AESkw(KEK, SEK) is the key wrapping function [RFC3394].

5.2.2. Encrypting the Payload

 The encryption of the payload of the SRT DATA packet is done with
 AES-CTR

 EncryptedPayload = AES_CTR_Encrypt(SEK, IV, UnencryptedPayload)

 where the Initialization Vector is derived as

 IV = (MSB(112, Salt) << 2) XOR (PktSeqNo)

 * PktSeqNo is the value of the Packet Sequence Number field of the
 SRT data packet.

5.3. Decryption Process

Sharabayko, et al. Expires 13 March 2021 [Page 54]

Internet-Draft SRT September 2020

5.3.1. Restoring the Stream Encrypting Key

 For the receiver to be able to decrypt the incoming stream it has to
 know the stream encrypting key (SEK) used by the sender. The
 receiver must know the passphrase used by the sender. The remaining
 information can be extracted from the Keying Material message.

 The Keying Material message contains the AES-wrapped [RFC3394] SEK
 used by the encoder. The Key-Encryption Key (KEK) required to unwrap
 the SEK is calculated as:

 KEK = PBKDF2(passphrase, LSB(64,Salt), Iter, KLen)

 where

 * PBKDF2 is the PKCS#5 Password Based Key Derivation Function
 [RFC2898],

 * passphrase is the pre-shared passphrase,

 * Salt is the field of the KM message,

 * LSB(n, v) is the function taking n least significant bits of v,

 * Iter=2048 defines the number of iterations for PBKDF2,

 * KLen is the field of the KM message.

 SEK = AESkuw(KEK, Wrap)

 where AESkuw(KEK, Wrap) is the key unwrapping function.

5.3.2. Decrypting the Payload

 The decryption of the payload of the SRT data packet is done with
 AES-CTR

 DecryptedPayload = AES_CTR_Encrypt(SEK, IV, EncryptedPayload)

 where the Initialization Vector is derived as

 IV = (MSB(112, Salt) << 2) XOR (PktSeqNo)

 * PktSeqNo is the value of the Packet Sequence Number field of the
 SRT data packet.

Sharabayko, et al. Expires 13 March 2021 [Page 55]

Internet-Draft SRT September 2020

6. Security Considerations

 SRT supports confidentiality of user data using stream ciphering
 based on AES. Session keys for ciphering are delivered through
 control packets during handshake, with the protection by Key
 Encryption Key, which is generated by a sender and receiver with pre-
 shared secret such as passphrase. As in UDT, careful uses of SYN
 Cookies may help to deter denial of service attacks. Appropriate
 security policy including key size, key refresh period, as well as
 passphrase should be managed by security officers, which is out of
 scope of the present document.

7. IANA Considerations

 This document makes no requests of the IANA.

Contributors

 This specification is heavily based on the SRT Protocol Technical
 Overview [SRTTO] written by Jean Dube and Steve Matthews.

 In alphabetical order, the contributors to the pre-IETF SRT project
 and specification at Haivision are: Marc Cymontkowski, Roman
 Diouskine, Jean Dube, Mikolaj Malecki, Steve Matthews, Maria
 Sharabayko, Maxim Sharabayko, Adam Yellen.

 The contributors to this specification at SK Telecom are Jeongseok
 Kim and Joonwoong Kim.

 We cannot list all the contributors to the open-sourced
 implementation of SRT on GitHub. But we appreciate the help,
 contribution, integrations and feedback of the SRT and SRT Alliances
 community.

Acknowledgments

 The basis of the SRT protocol and its implementation was the UDP-
 based Data Transfer Protocol [GHG04b]. The authors thank Yunhong Gu
 and Robert Grossman, the authors of the UDP-based Data Transfer
 Protocol [GHG04b].

 TODO acknowledge.

References

Normative References

Sharabayko, et al. Expires 13 March 2021 [Page 56]

Internet-Draft SRT September 2020

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Informative References

 [AES] National Institute of Standards and Technology, "FIPS Pub
 197: Advanced Encryption Standard (AES)", November 2001,
 <http://csrc.nist.gov/publications/fips/fips197/fips-
 197.pdf>.

 [AV1] Rivaz, P.d. and J. Haughton, "AV1 Bitstream & Decoding
 Process Specification", September 2020,
 <https://aomediacodec.github.io/av1-spec/av1-spec.pdf>.

 [BBR] Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., and V.
 Jacobson, "BBR: Congestion-Based Congestion Control",
 October 2016.

 [GHG04b] Gu, Y., Hong, X., and R.L. Grossman, "Experiences in
 Design and Implementation of a High Performance Transport
 Protocol", DOI 10.1109/SC.2004.24, December 2004,
 <https://doi.org/10.1109/SC.2004.24>.

 [GuAnAO] Gu, Y., Hong, X., and R.L. Grossman, "An Analysis of AIMD
 Algorithm with Decreasing Increases", October 2004.

 [H.265] International Telecommunications Union, "H.265 : High
 efficiency video coding", ITU-T Recommendation H.265,
 2019.

 [I-D.ietf-quic-http]
 Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-29, 9 June 2020, <http://www.ietf.org/internet-
 drafts/draft-ietf-quic-http-29.txt>.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-29, 9 June 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 transport-29.txt>.

Sharabayko, et al. Expires 13 March 2021 [Page 57]

Internet-Draft SRT September 2020

 [ISO13818-1]
 ISO, "Information technology -- Generic coding of moving
 pictures and associated audio information: Systems", ISO/
 IEC 13818-1, September 2020.

 [ISO23009] ISO, "Information technology -- Dynamic adaptive streaming
 over HTTP (DASH)", ISO/IEC 23009:2019, September 2020.

 [PNPID] "PNP ID AND ACPI ID REGISTRY", September 2020,
 <https://uefi.org/PNP_ACPI_Registry>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898,
 DOI 10.17487/RFC2898, September 2000,
 <https://www.rfc-editor.org/info/rfc2898>.

 [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
 Label Switching Architecture", RFC 3031,
 DOI 10.17487/RFC3031, January 2001,
 <https://www.rfc-editor.org/info/rfc3031>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8216] Pantos, R., Ed. and W. May, "HTTP Live Streaming",
 RFC 8216, DOI 10.17487/RFC8216, August 2017,
 <https://www.rfc-editor.org/info/rfc8216>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",
 RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

Sharabayko, et al. Expires 13 March 2021 [Page 58]

Internet-Draft SRT September 2020

 [RTMP] "Real-Time Messaging Protocol", September 2020,
 <https://www.adobe.com/devnet/rtmp.html>.

 [SP800-38A]
 Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation", December 2001.

 [SRTSRC] "SRT fully functional reference implementation", September
 2020, <https://github.com/Haivision/srt>.

 [SRTTO] Dube, J. and S. Matthews, "SRT Protocol Technical
 Overview", December 2019.

 [VP9] WebM, "VP9 Video Codec", September 2020,
 <https://www.webmproject.org/vp9>.

Appendix A. Packet Sequence List Coding

 For any single packet sequence number, it uses the original sequence
 number in the field. The first bit MUST start with "0".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Sequence Number |
 +-+

 Figure 18: Single sequence numbers coding

 For any consecutive packet sequence numbers that the difference
 between the last and first is more than 1, only record the first (a)
 and the the last (b) sequence numbers in the list field, and modify
 the the first bit of a to "1".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1| Sequence Number a (first) |
 +-+
 |0| Sequence Number b (last) |
 +-+

 Figure 19: Range of sequence numbers coding

Sharabayko, et al. Expires 13 March 2021 [Page 59]

Internet-Draft SRT September 2020

Appendix B. SRT Access Control

 One type of information that can be interchanged when a connection is
 being established in SRT is the Stream ID, which can be used in a
 caller-listener connection layout. This is a string of maximum 512
 characters set on the caller side. It can be retrieved at the
 listener side on the newly accepted connection.

 SRT listener can notify an upstream application about the connection
 attempt when a HS conclusion arrives, exposing the contents of the
 Stream ID extension message. Based on this information, the
 application can accept or reject the connection, select the desired
 data stream, or set an appropriate passphrase for the connection.

 The Stream ID value can be used as free-form, but there is a
 recommended convention so that all SRT users speak the same language.
 The intent of the convention is to:

 * promote readability and consistency among free-form names,

 * interpret some typical data in the key-value style.

B.1. General Syntax

 This recommended syntax starts with the characters known as an
 executable specification in POSIX: #!.

 The next two characters are:

 : - this marks the YAML format, the only one currently used
 The content format, which is either:
 : - the comma-separated keys with no nesting
 { - like above, but nesting is allowed and must end with }

 (Nesting means that you can have multiple level brace-enclosed parts
 inside.)

 The form of the key-value pair is:

 key1=value1,key2=value2...

Sharabayko, et al. Expires 13 March 2021 [Page 60]

Internet-Draft SRT September 2020

B.2. Standard Keys

 Beside the general syntax, there are several top-level keys treated
 as standard keys. All single letter key definitions, including those
 not listed in this section, are reserved for future use. Users can
 additionally use custom key definitions with user_* or companyname_*
 prefixes, where user and companyname are to be replaced with an
 actual user or company name.

 The existing key values MUST not be extended, and MUST not differ
 from those described in this section.

 The following keys are standard:

 * u: User Name, or authorization name, that is expected to control
 which password should be used for the connection. The application
 should interpret it to distinguish which user should be used by
 the listener party to set up the password.

 * r: Resource Name identifies the name of the resource and
 facilitates selection should the listener party be able to serve
 multiple resources.

 * h: Host Name identifies the hostname of the resource. For
 example, to request a stream with the URI somehost.com/videos/
 querry.php?vid=366 the hostname field should have somehost.com,
 and the resource name can have videos/querry.php?vid=366 or simply
 366. Note that this is still a key to be specified explicitly.
 Support tools that apply simplifications and URI extraction are
 expected to insert only the host portion of the URI here.

 * s: Session ID is a temporary resource identifier negotiated with
 the server, used just for verification. This is a one-shot
 identifier, invalidated after the first use. The expected usage
 is when details for the resource and authorization are negotiated
 over a separate connection first, and then the session ID is used
 here alone.

 * t: Type specifies the purpose of the connection. Several standard
 types are defined, but users may extend the use:

 - stream (default, if not specified): for exchanging the user-
 specified payload for an application-defined purpose,

 - file: for transmitting a file, where r is the filename,

Sharabayko, et al. Expires 13 March 2021 [Page 61]

Internet-Draft SRT September 2020

 - auth: for exchanging sensible data. The r value states its
 purpose. No specific possible values for that are known so far
 (FUTURE USE).

 * m: Mode expected for this connection:

 - request (default): the caller wants to receive the stream,

 - publish: the caller wants to send the stream data,

 - bidirectional: bidirectional data exchange is expected.

 Note that "m" is not required in the case where Stream ID is not used
 to distinguish authorization or resources, and the caller is expected
 to send the data. This is only for cases where the listener can
 handle various purposes of the connection and is therefore required
 to know what the caller is attempting to do.

B.3. Examples

 The example content of the StreamID is:

 #!::u=admin,r=bluesbrothers1_hi

 It specifies the username and the resource name of the stream to be
 served to the caller.

 #!::u=johnny,t=file,m=publish,r=results.csv

 This specifies that the file is expected to be transmitted from the
 caller to the listener and its name is results.csv.

Appendix C. Changelog

C.1. Since Version 00

 * Improved and extended the description of "Encryption" section,

 * Improved and extended the description of "Round-Trip Time
 Estimation" section,

 * Extended the description of "Handshake" section with "Stream ID
 Extension Message", "Group Membership Extension" subsections,

 * Extended "Handshake Messages" section with the detailed
 description of handshake procedure,

 * Improved "Key Material" section description,

Sharabayko, et al. Expires 13 March 2021 [Page 62]

Internet-Draft SRT September 2020

 * Changed packet structure formatting for "Packet Structure"
 section,

 * Did minor additions to the "Acknowledgement and Lost Packet
 Handling" section,

 * Fixed broken links,

 * Extended the list of references.

Authors’ Addresses

 Maxim Sharabayko
 Haivision Network Video, GmbH

 Email: maxsharabayko@haivision.com

 Maria Sharabayko
 Haivision Network Video, GmbH

 Email: msharabayko@haivision.com

 Jean Dube
 Haivision

 Email: jdube@haivision.com

 Jeongseok Kim
 SK Telecom Co., Ltd.

 Email: jeongseok.kim@sk.com

 Joonwoong Kim
 SK Telecom Co., Ltd.

 Email: joonwoong.kim@sk.com

Sharabayko, et al. Expires 13 March 2021 [Page 63]

