Module Versioning:
Imports

IETF NETMOD Interim
Dec 14, 2020



Introduction

Two issues related to versioning and imports:

1) Impact of NBC changes on imports. Do we need import by revision-
or-derived-compatible?

> https://github.com/netmod-wg/yang-ver-dt/issues/75
2) Impact of changing an import statement -> BC or NBC?

> https://github.com/netmod-wg/yang-ver-dt/issues/4



https://github.com/netmod-wg/yang-ver-dt/issues/75
https://github.com/netmod-wg/yang-ver-dt/issues/4

Impact of NBC changes on imports

> Import sub-statement extension “revision-or-derived” was introduced in module-versioning to
alleviate the restrictions of import by date. It reduces the set of importable revisions to those
which are derived from a particular revision

> Consider module A (1.0.0) which imports module B using “2.0.0 or derived” and that there is no
revision-label with MAJOR version > 2. This means A will be importing rev 2.Y.Z of module B.

~ If new revision 3.0.0 of module B is created (NBC changes), module A may end up importing
3.0.0 and this could break clients using module A. It’s also possible module A does not want the
changes made in 3.0.0 of module B.

~ Should we also have another extension “revision-or-derived-compatible” to limit the import set
to BC revisions? e.g “2.0.0 or derived compatible” would limit the imported version to 2.Y.Z,
3.0.0 would NOT be a candidate. Note that this would be done by looking at the revision
history: revisions after 2.0.0 which are marked NBC via the rev:nbc-changes extension would be
excluded.



Reminder on import

REC7950:

import module-b {
revision-date 2018-04-02; // specific revision
}

draft-ietf-netmod-module-versioning:

import module-b {
revision-or-derived 2.0.0 ; // revision 2.0.0 or any descendent
¥

What we are considering:

import module-b {
revision-or-derived-compatible 2.0.0; // revision 2.0.0 or any descendent compatible with 2.0.0
¥



Example 1: obsoleting if-index from ietf-
Interfaces

> Consider scenario where if-index is deprecated and eventually obsoleted. Adding
the obsolete status is an NBC change, and ietf-interfaces would e.g. go from
version 2.x.y to 3.0.0

> With “revision-or-derived 2.0.0", all importing modules would be able to import
the new version automatically

> With “revision-or-derived-compatible 2.0.0”, all importing modules would be
stuck importing 2.x.y. They would need to be modified to be able to import 3.0.0



Example 2: changing a type in an
Imported module

> Module B 2.0.0 has a grouping containing node vpn-id as an integer. Module A
uses that grouping.

> In 3.0.0 of module B, vpn-id is modified to be a string

~ Some servers/implementations may want to keep vpn-id as integer while others
may desire the new string definition

> With “revision-or-derived 2.0.0", all importing modules would get the new
definition

> With “revision-or-derived-compatible 2.0.0”, all importing modules would keep
the old definition

> Both statements are useful. Module A could be branched accordingly.



revision-or-derived-compatible

> Pros ~ Cons

> No accidental breakage to an importing ~ If import of an NBC revision is desired, this
module due to an NBC change in an imported requires modification of many importing
module i.e. the owner of an importing module modules. This is similar to import by date
has control > Do not automatically get NBC fixes made to

~ We know exactly what major version is being imported modules
“Se‘%' anf:i tflwe impact of changing the major > Potentially confusing to have 2 flavours of the
VEersion is clear import by derived substatement. Module

> Can be used for reactive repair of including owners may pick one not fully understanding
module if newer version of included module the implications

breaks the including module (e.g grouping
removed) or is not desired.



Impact of changing import stmt

> Consider module A (1.0.0) which imports module B using “2.0.0 or derived” and that there are
revision-labels with MAJOR version 2 and 3. This means A will import rev 2.Y.Z or 3.Y.Z of module
B.

> If module A is modified to importing module B using “3.0.0 or derived”, is this a BC or NBC
change?

> Authors/contributors believe that a change to an import statement should always considered
to be a BC change to the importing module.

> The revision label of a module represents the schema defined in that module.

> Clients know all the module versions in the schema (via YANG packages or YANG Library). The
NBC change in module B is reported in the schema, no need to also change the version of
module A

> The revision-label of the corresponding YANG package is updated according to the impact on the
package’s schema.



Impact of changing import stmt (other
option considered)

~ We also considered changing the version of module A depending on the BC/NBC
impact but have the following concerns:

- Potential ripple effect, e.g. if module A includes module B which includes C etc
etc, changing one import statement at the bottom could lead to many modules
having their version updated to reflect NBC change.

~ There is no need to reflect the NBC change on including modules since clients
have to look at the whole schema



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

