
Module Versioning:
Imports

IETF NETMOD Interim
Dec 14, 2020

Introduction

Two issues related to versioning and imports:

1) Impact of NBC changes on imports. Do we need import by revision-
or-derived-compatible?

 https://github.com/netmod-wg/yang-ver-dt/issues/75

2) Impact of changing an import statement -> BC or NBC?
 https://github.com/netmod-wg/yang-ver-dt/issues/4

https://github.com/netmod-wg/yang-ver-dt/issues/75
https://github.com/netmod-wg/yang-ver-dt/issues/4

Impact of NBC changes on imports

 Import sub-statement extension “revision-or-derived” was introduced in module-versioning to
alleviate the restrictions of import by date. It reduces the set of importable revisions to those
which are derived from a particular revision

 Consider module A (1.0.0) which imports module B using “2.0.0 or derived” and that there is no
revision-label with MAJOR version > 2. This means A will be importing rev 2.Y.Z of module B.

 If new revision 3.0.0 of module B is created (NBC changes), module A may end up importing
3.0.0 and this could break clients using module A. It’s also possible module A does not want the
changes made in 3.0.0 of module B.

 Should we also have another extension “revision-or-derived-compatible” to limit the import set
to BC revisions? e.g “2.0.0 or derived compatible” would limit the imported version to 2.Y.Z,
3.0.0 would NOT be a candidate. Note that this would be done by looking at the revision
history: revisions after 2.0.0 which are marked NBC via the rev:nbc-changes extension would be
excluded.

Reminder on import

RFC7950:

import module-b {
 revision-date 2018-04-02; // specific revision
}

draft-ietf-netmod-module-versioning:

import module-b {
 revision-or-derived 2.0.0 ; // revision 2.0.0 or any descendent
}

What we are considering:

import module-b {
 revision-or-derived-compatible 2.0.0; // revision 2.0.0 or any descendent compatible with 2.0.0
}

Example 1: obsoleting if-index from ietf-
interfaces
 Consider scenario where if-index is deprecated and eventually obsoleted. Adding

the obsolete status is an NBC change, and ietf-interfaces would e.g. go from
version 2.x.y to 3.0.0

 With “revision-or-derived 2.0.0”, all importing modules would be able to import
the new version automatically

 With “revision-or-derived-compatible 2.0.0”, all importing modules would be
stuck importing 2.x.y. They would need to be modified to be able to import 3.0.0

Example 2: changing a type in an
imported module
 Module B 2.0.0 has a grouping containing node vpn-id as an integer. Module A

uses that grouping.
 In 3.0.0 of module B, vpn-id is modified to be a string
 Some servers/implementations may want to keep vpn-id as integer while others

may desire the new string definition
 With “revision-or-derived 2.0.0”, all importing modules would get the new

definition
 With “revision-or-derived-compatible 2.0.0”, all importing modules would keep

the old definition
 Both statements are useful. Module A could be branched accordingly.

revision-or-derived-compatible

 Pros

 No accidental breakage to an importing
module due to an NBC change in an imported
module i.e. the owner of an importing module
has control

 We know exactly what major version is being
used and the impact of changing the major
version is clear

 Can be used for reactive repair of including
module if newer version of included module
breaks the including module (e.g grouping
removed) or is not desired.

 Cons

 If import of an NBC revision is desired, this
requires modification of many importing
modules. This is similar to import by date

 Do not automatically get NBC fixes made to
imported modules

 Potentially confusing to have 2 flavours of the
import by derived substatement. Module
owners may pick one not fully understanding
the implications

Impact of changing import stmt

 Consider module A (1.0.0) which imports module B using “2.0.0 or derived” and that there are
revision-labels with MAJOR version 2 and 3. This means A will import rev 2.Y.Z or 3.Y.Z of module
B.

 If module A is modified to importing module B using “3.0.0 or derived”, is this a BC or NBC
change?

 Authors/contributors believe that a change to an import statement should always considered
to be a BC change to the importing module.

 The revision label of a module represents the schema defined in that module.

 Clients know all the module versions in the schema (via YANG packages or YANG Library). The
NBC change in module B is reported in the schema, no need to also change the version of
module A

 The revision-label of the corresponding YANG package is updated according to the impact on the
package’s schema.

Impact of changing import stmt (other
option considered)
 We also considered changing the version of module A depending on the BC/NBC

impact but have the following concerns:
 Potential ripple effect, e.g. if module A includes module B which includes C etc

etc, changing one import statement at the bottom could lead to many modules
having their version updated to reflect NBC change.

 There is no need to reflect the NBC change on including modules since clients
have to look at the whole schema

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

