
Network File System Version 4 C. Lever

Internet-Draft Oracle

Intended status: Standards Track April 3, 2020

Expires: October 5, 2020

 Integrity Measurement for Network File System version 4

 draft-ietf-nfsv4-integrity-measurement-08

Abstract

 This document specifies an OPTIONAL extension to NFS version 4 minor

 version 2 that enables Linux Integrity Measurement Architecture

 metadata (IMA) to be conveyed between NFS version 4.2 servers and

 clients. Integrity measurement authenticates the creator of a file’s

 content and helps guarantee the content’s integrity end-to-end from

 creation to use.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 5, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

Lever Expires October 5, 2020 [Page 1]

Internet-Draft IMA for NFS Files April 2020

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 1.1. The Linux Integrity Measurement Architecture 3

 1.1.1. IMA Metadata . 4

 1.1.2. Creating and Verifying IMA Metadata 4

 1.1.3. Distributing and Protecting Keying Material 5

 1.1.4. Using IMA to Protect NFS Files 5

 1.2. An Illustrative Use Case 5

 2. Requirements Language . 6

 3. Protocol Extension Considerations 6

 3.1. XDR Extraction . 7

 4. Managing IMA Metadata on NFS Files 7

 4.1. XDR Definition . 7

 4.1.1. NFS4ERR_INTEGRITY (Error Code YYYYY) 8

 4.2. Detecting support for IMA Metadata 8

 4.2.1. Reporting Server-Side IMA Appraisal Failures 9

 4.3. Storing IMA Metadata 9

 4.3.1. Sending IMA Metadata When Creating a New Object . . . 10

 4.3.2. Authorizing Updates to IMA Metadata 10

 4.4. Retrieving IMA Metadata 11

 4.5. Using NFS Attribute Fencing (VERIFY/NVERIFY) 11

 5. Deployment Examples . 12

 5.1. Terminology . 12

 5.2. Instantiating IMA Metadata 13

 5.3. Interaction With Legacy Implementations 14

 6. Implementation Status . 14

 6.1. Linux NFS server and client 15

 7. Security Considerations 15

 8. IANA Considerations . 16

 9. References . 16

 9.1. Normative References 16

 9.2. Informative References 17

 9.3. URIs . 17

 Acknowledgments . 17

 Author’s Address . 18

1. Introduction

 The security of software distribution systems is complex and

 challenging, especially as software distribution has become

 increasingly decentralized. An end administrator needs to trust that

 she is running executables just as they are supplied by a software

 vendor; in other words, that they have not been modified by malicious

 actors, contracted system administration services, or broken hardware

Lever Expires October 5, 2020 [Page 2]

Internet-Draft IMA for NFS Files April 2020

 or software. Software vendors want a guarantee that customer-

 installed executables that fall under support contracts have

 similarly not been modified.

 There already exist mechanisms that protect file data during certain

 portions of a file’s life cycle:

 o Whole file system checksumming can verify so-called Golden Master

 installation media before it is used to install the software it

 contains.

 o File or block integrity mechanisms can protect data at rest on

 storage servers.

 o For a distributed file system such as NFS, transport layer

 security or a GSS integrity service (as described in [RFC7861])

 can protect data while it traverses a network between a storage

 server and a client.

 A more extensive mechanism is needed to guarantee that no

 modification of a particular file has occurred since it was created,

 perhaps even after several generations of copies have been made of

 the file’s content.

1.1. The Linux Integrity Measurement Architecture

 The Linux Integrity Measurement Architecture (IMA) [SAILER] provides

 assurance that the content of a file is unaltered and authentic to

 what was originally written to that file. The goal is to detect when

 an attacker, unintentional platform behavior, or local tinkering has

 modified the content of a file, either in transit or at rest.

 This is done by separately storing metadata about a file’s content

 and then using that metadata to verify the content before it is used.

 Verification of the content is entirely independent of the file

 system. File systems, both local and remote, act simply as storage

 for both the content and the metadata, both of which are opaque to

 the storage subsystem.

 An informative description of this mechanism is presented in the

 following subsections to provide context for understanding the NFS

 protocol extension described later in this document. As the file

 system does not interpret IMA metadata, this description is not

 necessary to implement the extension.

Lever Expires October 5, 2020 [Page 3]

Internet-Draft IMA for NFS Files April 2020

1.1.1. IMA Metadata

 First, it is important to understand the distinction between a

 checksum, a hash, and a cryptographically-signed hash.

 o A checksum, or parity, is designed to detect and possibly correct

 one or two bit errors in a fixed amount of content.

 o A hash’s purpose is to detect both accidental and malicious

 alterations. Typically a hash is a small fixed size, but can be

 computed over a very large amount of content.

 o A cryptographically-signed hash is the basis for a digital

 signature. The signatory of a cryptographically-signed hash gives

 a guarantee that the hash, and therefore the hashed content, has

 not been changed, since the hash was signed.

 A cryptographically-signed hash stored separately from a file’s

 content therefore serves as a strong check of file content integrity

 and authenticates the identity of the provider of the file’s content.

 The signer is verified at time of content use via a web of trust

 commonly provided by PKI or x.509 certificates [RFC4158].

 The hash is typically computed using either the SHA-1 or SHA-256

 algorithm and is stored as an HMAC [RFC2104]. For the purposes of

 this document, the current document refers to this blob as "IMA

 metadata".

 The precise format of this metadata is determined by policies set by

 the local security administrator; the metadata and its format are

 opaque to the mechanisms that store or transport it (i.e., file

 systems). The particulars of the PKI and the hash algorithm are set

 by local policy, which is agreed upon out-of-band and recognized by

 all participating IMA subsystems.

1.1.2. Creating and Verifying IMA Metadata

 In a typical deployment, an authority (such as a software vendor)

 computes the hash of a file after its content has been finalized.

 The hash is then signed and attached to the file. A web of trust

 typically links the signer to the users of the file’s content (such

 as customers of the software vendor).

 Directly before file content is to be used, a security module locally

 re-computes the hash of the file content and stores it in a cache.

 This step is known as "measurement".

Lever Expires October 5, 2020 [Page 4]

Internet-Draft IMA for NFS Files April 2020

 The next step is referred to as "appraisal". The security module

 then reads the associated IMA metadata and validates its signature.

 If the signature is invalid or the locally computed hash does not

 match the stored hash, the security module applies an appraisal

 policy. The file may be flagged in an audit log or access to the

 file may be denied.

 Underlying file and storage systems play no part in measurement or

 appraisal. They act only as a conduit by which file content and IMA

 metadata move between at-rest storage and the security module on the

 host where that content is to be used. Both IMA metadata and file

 content are opaque to storage subsystems.

1.1.3. Distributing and Protecting Keying Material

 A Trusted Platform Module [1] can seal key material used to sign and

 appraise file content. Unprotected keys are not stored in or

 distributed via file systems. Distributing and protecting such key

 material is outside the scope of the extension specified in this

 document.

1.1.4. Using IMA to Protect NFS Files

 The protocol extension in this document enables the storage and use

 of IMA metadata so that measurement and appraisal can occur at point-

 of-use on NFS client and server hosts. This mechanism is similar to

 NFSv4 Security Labels (specified in [RFC7862] et al). The purpose of

 the mechanism defined in the current document is to store security-

 related file metadata that is not interpreted by the file system

 itself.

1.2. An Illustrative Use Case

 To help the reader grasp how IMA on NFS might be used in practice,

 this section contains a decription of an IMA use case. The purpose

 of using IMA here is to provide a guarantee that a set of users that

 are executing a commercial software product are indeed using the same

 binary executable and libraries that were developed and tested by the

 product’s vendor.

 To publish a software product, a vendor might do the following:

 1. The vendor generates a key pair and publishes the public key.

 2. The vendor finalizes a version of its software product.

 3. The vendor generates a hash of each file in the product’s

 distribution manifest, and signs each hash with its private key.

Lever Expires October 5, 2020 [Page 5]

Internet-Draft IMA for NFS Files April 2020

 4. The vendor publishes the product’s files and the signed hashes.

 To install and use the vendor’s product, a customer might do the

 following:

 1. The customer installs the files and the signed hashes in a local

 filesystem.

 2. When a user executes one of the files, a local security module

 reads the file from disk and computes a hash of its content.

 This is the measurement step, which happens when each file is

 loaded into the system’s page cache.

 3. The security module uses the vendor’s public key to verify the

 signature of the file’s stored hash, and confirms that the

 locally computed hash matches the stored hash. This is the

 appraisal step, which happens when each file is about to be

 executed.

 4. If the locally computed hash is verified, the security module

 allows the operating system to execute the program. If not, then

 the program fails to execute and an integrity error is logged.

 The purpose of the NFS extension specified in the current document is

 to enable the signed hashes in the above example to be stored by an

 NFS server and retrieved by NFS clients. Each NFS client could then

 verify that neither the NFS server nor an active network agent had

 altered file content before it was used on the NFS client.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. Protocol Extension Considerations

 This document specifies an OPTIONAL extension to NFS version 4 minor

 version 2 [RFC7862], hereafter referred to as NFS version 4.2. NFS

 version 4.2 servers and clients implemented without knowledge of this

 extension will continue to interoperate with NFS version 4.2 clients

 and servers that are aware of the extension, whether or not they

 support it.

 Because [RFC7862] does not define NFS version 4.2 as non-extensible,

 [RFC8178] treats it as an extensible minor version. Therefore this

Lever Expires October 5, 2020 [Page 6]

Internet-Draft IMA for NFS Files April 2020

 Standards Track RFC extends NFS version 4.2 but does not update

 [RFC7862] or [RFC7863].

3.1. XDR Extraction

 Section 4.1 contains a description of an extension to the NFS version

 4.2 protocol, expressed in the External Data Representation (XDR)

 language [RFC4506]. This description is provided in a way that makes

 it simple to extract into ready-to-compile form. The reader can

 apply the following sed script to this document to produce a machine-

 readable XDR description of the extension.

 <CODE BEGINS>

 sed -n -e ’s:^ */// ::p’ -e ’s:^ *///$::p’

 <CODE ENDS>

 That is, if this document is in a file called "ima-extension.txt"

 then the reader can do the following to extract an XDR description

 file:

 <CODE BEGINS>

 sed -n -e ’s:^ */// ::p’ -e ’s:^ *///$::p’

 < ima-extension.txt > ima.x

 <CODE ENDS>

 Once that extraction is done, these added lines need to be inserted

 into an appropriate base XDR of the generated XDR from [RFC7863]

 together with XDR from any additional extensions to be recognized by

 the implementation. This will result in a ready-to-compile XDR file.

4. Managing IMA Metadata on NFS Files

4.1. XDR Definition

 This section defines a new data type to encapsulate and a new

 OPTIONAL attribute to access and update IMA metadata associated with

 a particular file.

 To enable a single IMA metadata payload to be retrieved or updated

 via a single RPC, and to constrain the transport resources required

 for the operations defined in this section, the length of IMA

 metadata MUST NOT exceed 4096 bytes in length.

Lever Expires October 5, 2020 [Page 7]

Internet-Draft IMA for NFS Files April 2020

 When an NFS version 4.2 server does not recognize, or does recognize

 but does not support, this new attribute, the server responds in

 accordance with the requirements specified in Section 4.3 of

 [RFC8178].

 <CODE BEGINS>

 /// /*

 /// * Copyright (c) 2019 IETF Trust and the person identified

 /// * as author of the code. All rights reserved.

 /// *

 /// * The author of the code is: C. Lever

 /// */

 ///

 /// %/*

 /// % * New For Integrity Measurement support

 /// % */

 /// opaque ima_data4<4096>;

 ///

 /// const FATTR4_IMA = XXX; /* to be assigned */

 ///

 /// %/*

 /// % *New value added to enum nfsstat4

 /// % */

 /// const NFS4ERR_INTEGRITY = YYYYY; /* to be assigned */

 <CODE ENDS>

 RFC Editor: In this document, please replace XXX with the FATTR4

 number assigned by the NFSV4 WG, and replace YYYYY with the NFS4ERR

 code point assigned by the NFSV4 WG.

4.1.1. NFS4ERR_INTEGRITY (Error Code YYYYY)

 The server rejected this request because a data or metadata integrity

 check failed during its execution.

4.2. Detecting support for IMA Metadata

 An NFS version 4.2 client discovers support for IMA metadata on an

 NFS version 4.2 server by sending an NFS GETATTR operation that

 specifies the FATTR4_SUPPORTED_ATTRS attribute and the FATTR4_IMA

 attribute. When a server supports IMA metadata, it sets the

 FATTR4_IMA attribute bit in the NFS GETATTR bitmask returned in the

 reply. Otherwise that bit is clear.

 An NFS version 4.2 server MUST NOT return NFS4ERR_INTEGRITY to a

 client unless that client has queried the server for IMA metadata

Lever Expires October 5, 2020 [Page 8]

Internet-Draft IMA for NFS Files April 2020

 support using the above mechanism. The server identifies clients

 using their client_id4 for this purpose.

4.2.1. Reporting Server-Side IMA Appraisal Failures

 An NFS server that has rigorous integrity checking must somehow

 report integrity-related failures to clients. Until now, a server

 implementer chose amongst status codes that were available in the

 base NFS version 4.2 protocol, typically NFS4ERR_IO or

 NFS4ERR_ACCESS, even though these code points have generic meanings

 that do not necessarily imply an integrity-related failure.

 Once the above FATTR4_SUPPORTED_ATTRS handshake is done, the server

 has determined that a client can properly recognize the

 NFS4ERR_INTEGRITY status code. In instances where an NFS request

 fails due to an integrity-related issue, and the server has

 determined that the client recognizes the NFS4ERR_INTEGRITY status

 code, the server MAY return NFS4ERR_INTEGRITY for the following

 operations: ACCESS, COMMIT, CREATE, GETATTR, GETDEVICELIST, LINK,

 LOOKUP, LOOKUPP, NVERIFY, OPEN, OPENATTR, READ, READDIR, READLINK,

 REMOVE, RENAME, SETATTR, VERIFY, WRITE. The server MUST NOT return

 NFS4ERR_INTEGRITY for any other operation.

 The NFS4ERR_INTEGRITY status code is useful to inform the client (or

 the end user, depending on the client implementation) that access to

 the file’s content was not blocked because of a permissions setting

 but rather because an integrity check failed. This distinction can

 guide the user or client towards a recovery action that is

 appropriate.

4.3. Storing IMA Metadata

 An NFS version 4.2 client stores IMA metadata by sending an NFS

 SETATTR operation that specifies the FATTR4_IMA attribute and targets

 the file system object associated with the metadata to be stored.

 This attribute completely replaces any previous FATTR4_IMA attribute

 associated with that object. Modifying an object in any other way

 MUST NOT alter or remove FATTR4_IMA attributes.

 To remove IMA metadata from an object, the client sends a FATTR4_IMA

 attribute whose length is zero.

 When an NFS SETATTR is presented to an NFS version 4.2 server with a

 credential that is not authorized to replace a FATTR4_IMA attribute,

 the server MUST respond with NFS4ERR_ACCESS.

Lever Expires October 5, 2020 [Page 9]

Internet-Draft IMA for NFS Files April 2020

 When an NFS SETATTR is presented to an NFS version 4.2 server with an

 ima_data4 field whose length is larger than 4096 bytes, the server

 MUST respond with NFS4ERR_INVAL.

 When an NFS SETATTR is presented to an NFS version 4.2 server and the

 target object resides in a file system which supports FATTR4_IMA but

 the object itself does not support the FATTR4_IMA attribute, the

 server MUST respond with NFS4ERR_WRONGTYPE. For example, if the

 server’s file system supports associating IMA metadata with regular

 files but not with sockets or FIFOs, then the result of an attempt to

 associate IMA metadata with a FIFO will be NFS4ERR_WRONGTYPE.

 When an NFS SETATTR is presented to an NFS version 4.2 server but the

 target object resides in a file system which does not support the

 FATTR4_IMA attribute, the server MUST respond with

 NFS4ERR_ATTRNOTSUPP.

 When a client presents an NFS SETATTR that modifies FATTR4_IMA along

 with other attributes and the server responds with an error, the

 client can retry setting each attribute separately to sort out which

 attribute is causing the server to reject the NFS SETATTR operation.

 A detailed description of the NFS SETATTR operation can be found in

 Section 18.30 of [RFC5661].

4.3.1. Sending IMA Metadata When Creating a New Object

 An alternate way to set an attribute is to provide the attribute

 during an NFS OPEN(CREATE) operation. Upon creation, an object has

 no content to protect. If a client presents an FATTR4_IMA attribute

 to an NFS version 4.2 server during NFS OPEN(CREATE), the server MUST

 respond with NFS4ERR_INVAL.

4.3.2. Authorizing Updates to IMA Metadata

 An NFS server permits a user to replace a file’s IMA metadata

 whenever that user is permitted to modify that file’s byte content.

 This is consistent with similar mechanisms already used throughout

 the NFS version 4 protocol; for instance, setting an ACL. If an NFS

 server determines that a user requesting a SETATTR with the

 FATTR4_IMA attribute is not authorized to update the IMA metadata,

 the SETATTR operation MUST return NFS4ERR_ACCESS.

 If an NFS server implementation does not support modification of IMA

 metadata via NFS, the server MUST return NFS4ERR_INVAL to a SETATTR

 request with the FATTR4_IMA attribute, as required by Section 5.5 of

 [RFC5661].

Lever Expires October 5, 2020 [Page 10]

Internet-Draft IMA for NFS Files April 2020

4.4. Retrieving IMA Metadata

 An NFS version 4.2 client retrieves IMA metadata by retrieving the

 FATTR4_IMA attribute via an NFS GETATTR operation, specifying the

 file handle of the object associated with the metadata to be

 retrieved.

 The IMA subsystem typically manages its own cache of this metadata to

 maintain reasonable performance. The NFS client implementation MUST

 always pass retrieval requests for this metadata to the server. This

 metadata MUST NOT be cached by the NFS client.

 When an NFS GETATTR is presented to an NFS version 4.2 server and the

 target object resides in a file system which supports the FATTR4_IMA

 attribute but the object does not support the FATTR4_IMA attribute,

 the server MUST respond with NFS4ERR_WRONGTYPE. For example, if the

 server’s file system supports associating IMA metadata with regular

 files but not named attributes, then the result of an attempt to

 retrieve IMA metadata on a named attribute will be NFS4ERR_WRONGTYPE.

 When an NFS GETATTR is presented to an NFS version 4.2 server but the

 target object resides in a file system which does not support

 FATTR4_IMA, this does not result in an error and the FATTR4_IMA

 attribute bit is cleared in the server’s response.

 Otherwise, if the target object supports FATTR4_IMA and there is no

 IMA metadata is available for the target object, the server returns a

 FATTR4_IMA attribute whose length is zero.

 When a client presents an NFS GETATTR that retrieves FATTR4_IMA along

 with other attributes and the server responds with an error, the

 client can retry by retrieving each attribute separately to sort out

 which attribute is causing the server to reject the NFS GETATTR

 operation.

 A detailed description of the NFS GETATTR operation can be found in

 Section 18.7 of [RFC5661].

4.5. Using NFS Attribute Fencing (VERIFY/NVERIFY)

 The NFS VERIFY and NVERIFY operations, described in Sections 18.31

 and 18.15 of [RFC5661] respectively, permit a client to add a fence

 in an NFS COMPOUND where, if a provided FATTR4 attribute does or does

 not match, the server can force processing of that COMPOUND to stop.

 The FATTR4_IMA attribute is a valid choice for these operations.

 The server MUST use a simple byte comparison to evaluate whether the

 client-provided FATTR4_IMA matches the FATTR4_IMA attribute

Lever Expires October 5, 2020 [Page 11]

Internet-Draft IMA for NFS Files April 2020

 associated with the target object. If the server has a local IMA

 implementation, it MAY prevent the use of the local FATTR4_IMA

 attribute value for the purpose of this comparison (via EVM

 protection). If the client has indicated support for IMA metadata,

 the server MUST respond with NFS4ERR_INTEGRITY. Otherwise it MUST

 respond with NFS4ERR_ACCESS.

5. Deployment Examples

5.1. Terminology

 Because the protocol extension described in this document is

 OPTIONAL, clients and servers that support it will necessarily

 interact with clients and servers that do not support it. To aid the

 discussion in this section, we define the following terms:

 Appraiser: A security module separate from the storage system that

 appraises file content based on a policy and IMA measurement

 results.

 Participating Client: An NFS version 4.2 client that employs an

 appraiser, supports the OPTIONAL extension described in this

 document, and indicates this support to NFS servers using the

 handshake described in Section 4.2.

 Legacy Client: Any NFS client that does not support the OPTIONAL

 extension described in this document.

 Participating Server: An NFS version 4.2 server that supports the

 OPTIONAL extension described in this document, indicates this

 support to clients using the handshake described in Section 4.2,

 and its shared file systems can store IMA metadata. A

 participating server is not required to implement an appraiser.

 Legacy Server: Any NFS server that does not support the OPTIONAL

 extension described in this document.

 In addition, there are intermediate modes of operation on

 participating peers:

 Full-function Client: A participating client that can modify IMA

 metadata via NFS.

 Fetch-only Client: A participating client that does not support

 modifying IMA metadata on a participating server.

Lever Expires October 5, 2020 [Page 12]

Internet-Draft IMA for NFS Files April 2020

 Full-function Server: A participating server that has a local user

 execution environment and supports updating IMA metadata that

 resides on shared local file systems.

 Store-only Server: A participating server where there is only remote

 access to file content and IMA metadata.

 Lastly, we provide the following possible simple appraisal policies

 that might be applied by an appraiser:

 Strict: Access is prevented to a file’s content if the file has no

 IMA metadata or if the extant IMA metadata fails to verify the

 file content. Otherwise access to the file’s content is not

 prevented.

 Audit: Access to a file’s content is never prevented. Warnings are

 reported when a file has no IMA metadata or when extant IMA

 metadata fails to verify the file’s content.

 Disabled: IMA metadata is ignored and access to file content is

 never prevented.

5.2. Instantiating IMA Metadata

 Once a file is written and closed, a specialized tool generates and

 signs the IMA metadata and then writes it to the file system. The

 tool can be used on a full-function client to sign files on a

 participating server. Or, the tool can be used on a full-function

 server to sign local files. The IMA metadata is then visible to

 participating clients and local users on the server (if there are

 any). Or, an enhanced version of cpio or rsync might copy the

 metadata into place as part of an installation procedure.

 Typically, once IMA metadata is associated with a file, the file’s

 content is essentially immutable, even if the file’s permissions

 settings permit writing to it. This is because changing the content

 without updating the associated IMA metadata will make the file’s

 content inaccessible, depending on the appraisal policy in effect.

 Updating file content requires access to a signing key in order to

 generate fresh IMA metadata to prevent subsequent IMA appraisal

 failures. Typically a key like this will be well-protected, and thus

 not available on NFS clients.

Lever Expires October 5, 2020 [Page 13]

Internet-Draft IMA for NFS Files April 2020

5.3. Interaction With Legacy Implementations

 Given the example policies and definitions we provided earlier, the

 following statements are true:

 o A participating client that uses the Disabled policy is equivalent

 to a legacy client, except that a participating server is allowed

 to respond with NFS4ERR_INTEGRITY to a participating client.

 o A legacy client never prevents access to file content on a

 participating server, but a participating server that has a local

 appraiser may prevent access of a corrupted file to a legacy

 client.

 o A participating client using the Strict policy never allows access

 to files stored on a legacy server.

 An appraiser on a participating NFS version 4.2 peer needs to be

 prepared to deal gracefully with IMA metadata it does not recognize

 or cannot parse. Its policy may treat this case as an appraisal

 failure.

 It is not required for an NFS version 4.2 server to implement an

 appraiser. However, some servers, such as the Linux NFS server, do

 just that, applying local IMA policy to both local and remote file

 accesses.

 If an appraisal failure occurs during a remote access, a

 participating server responds to a legacy client with NFS4ERR_ACCESS.

 The server’s local policy decides exactly what a participating client

 sees: Possibilities include an NFS4ERR_INTEGRITY response (and access

 to the file is denied), or access to the file content and IMA

 metadata may be permitted so that the client’s own IMA policies can

 be applied.

6. Implementation Status

 RFC Editor: Please remove this section and the reference to RFC 7942

 before this document is published.

 This section records the status of known implementations of the

 protocol defined by this specification at the time of posting of this

 Internet-Draft, and is based on a proposal described in [RFC7942].

 The description of implementations in this section is intended to

 assist the IETF in its decision processes in progressing drafts to

 RFCs.

Lever Expires October 5, 2020 [Page 14]

Internet-Draft IMA for NFS Files April 2020

 Please note that the listing of any individual implementation here

 does not imply endorsement by the IETF. Furthermore, no effort has

 been spent to verify the information presented here that was supplied

 by IETF contributors. This is not intended as, and must not be

 construed to be, a catalog of available implementations or their

 features. Readers are advised to note that other implementations may

 exist.

6.1. Linux NFS server and client

 Organization: The Linux Foundation

 URL: https://www.kernel.org

 Maturity: Prototype software based on early versions of this

 document.

 Coverage: The bulk of this specification is implemented.

 Licensing: GPLv2

 Implementation experience: No comments from implementors.

7. Security Considerations

 The design of the NFS extension described in this document assumes

 that IMA metadata in transit and at rest is cryptographically signed

 to prevent unwanted alteration.

 When IMA metadata for a file exists and the end host has an active

 appraiser, the content of a file is protected from creation to use.

 Receivers can reliably detect unintentional or malicious alteration

 of file content by verifying its content using the file’s IMA

 metadata. Additional protection of file content while at rest or in

 transit on an untrusted network is unnecessary.

 Likewise, receivers can also reliably detect unintentional or

 malicious alteration of IMA metadata that is cryptographically

 signed, simply by verifying its signature. Additional protection of

 signed metadata while at rest or in transit on an untrusted network

 is unnecessary.

 Like other mechanisms that protect data integrity during transit, a

 malicious agent or a network malfunction can create a denial-of-

 service condition by repeatedly triggering integrity verification

 failures on NFS version 4.2 clients.

Lever Expires October 5, 2020 [Page 15]

Internet-Draft IMA for NFS Files April 2020

 To prevent a malicious denial-of-service attempt by altering IMA

 metadata at rest, an NFS version 4.2 server can enforce a suitable

 level of privilege before authorizing a local or remote agent to

 alter this information. See Section 4.3.2 for more detail.

8. IANA Considerations

 This document has no IANA actions.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation

 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May

 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

 "Network File System (NFS) Version 4 Minor Version 1

 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,

 <https://www.rfc-editor.org/info/rfc5661>.

 [RFC7862] Haynes, T., "Network File System (NFS) Version 4 Minor

 Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,

 November 2016, <https://www.rfc-editor.org/info/rfc7862>.

 [RFC7863] Haynes, T., "Network File System (NFS) Version 4 Minor

 Version 2 External Data Representation Standard (XDR)

 Description", RFC 7863, DOI 10.17487/RFC7863, November

 2016, <https://www.rfc-editor.org/info/rfc7863>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running

 Code: The Implementation Status Section", BCP 205,

 RFC 7942, DOI 10.17487/RFC7942, July 2016,

 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8178] Noveck, D., "Rules for NFSv4 Extensions and Minor

 Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,

 <https://www.rfc-editor.org/info/rfc8178>.

Lever Expires October 5, 2020 [Page 16]

Internet-Draft IMA for NFS Files April 2020

9.2. Informative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

 Hashing for Message Authentication", RFC 2104,

 DOI 10.17487/RFC2104, February 1997,

 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC4158] Cooper, M., Dzambasow, Y., Hesse, P., Joseph, S., and R.

 Nicholas, "Internet X.509 Public Key Infrastructure:

 Certification Path Building", RFC 4158,

 DOI 10.17487/RFC4158, September 2005,

 <https://www.rfc-editor.org/info/rfc4158>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

 "Network File System (NFS) Version 4 Minor Version 1

 External Data Representation Standard (XDR) Description",

 RFC 5662, DOI 10.17487/RFC5662, January 2010,

 <https://www.rfc-editor.org/info/rfc5662>.

 [RFC7861] Adamson, A. and N. Williams, "Remote Procedure Call (RPC)

 Security Version 3", RFC 7861, DOI 10.17487/RFC7861,

 November 2016, <https://www.rfc-editor.org/info/rfc7861>.

 [SAILER] Sailer, R., Zhang, X., Jaeger, T., and L. van Doorn,

 "Design and Implementation of a TCG-based Integrity

 Measurement Architecture", Proceedings of the 13th USENIX

 Security Symposium, August 2004.

9.3. URIs

 [1] https://trustedcomputinggroup.org/wp-content/uploads/Trusted-

 Platform-Module-Summary_04292008.pdf

Acknowledgments

 The author wishes to thank Mimi Zohar and James Morris for their

 early review of the concepts in this document, Wim Coekaerts for his

 encouragement of this work, and Dave Noveck for his work on NFS

 version 4 extensibility.

 The author wishes to acknowledge review comments from Dave Noveck,

 Craig Everhart, and Bruce Fields which helped to make this a better

 document.

 The XDR extraction conventions were first described by the authors of

 the NFS version 4.1 XDR specification [RFC5662]. Herbert van den

 Bergh suggested the replacement sed script used in this document.

Lever Expires October 5, 2020 [Page 17]

Internet-Draft IMA for NFS Files April 2020

 Special thanks go to Transport Area Director Magnus Westerlund, NFSV4

 Working Group Chairs Dave Noveck and Brian Pawlowski, and NFSV4

 Working Group Secretary Thomas Haynes for their support.

Author’s Address

 Charles Lever

 Oracle Corporation

 United States of America

 Email: chuck.lever@oracle.com

Lever Expires October 5, 2020 [Page 18]

