
RPC-over-RDMA
Version Two

Chuck Lever

<chuck.lever@oracle.com>

mailto:chuck.lever@oracle.com

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Outline

• Relevant documents and their status

• Overview of new features

• Open issues

• Next steps

2

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

draft-ietf-nfsv4-rpcrdma-
version-two

• This Working Group document defines a new version of
the RPC-over-RDMA transport protocol.

• Replaced draft-cel-nfsv4-rpcrdma-nfsv4-version-two in
November 2019, now at revision -01.

• WG milestone: Submit final document December 2020.

3

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

draft-ietf-nfsv4-nfs-ulb-v2

• This Working Group document defines bindings between
the NFS family of protocols and RPC-over-RDMA version
2.

• New document as of November 2019, now at revision
-01.

• WG milestone: Submit final document December 2020.

4

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Protocol Integration

• Previous slides didn’t mention certain ancestor
documents:

• Reverse-direction operation (RFC 8167) is now
specified as part of RPC-over-RDMA version 2.

• Capability probing (rpcrdma-cm-pvt-data) is now
handled in RPC-over-RDMA version 2, instead of being
exchanged via Communication Manager Private Data.

5

Feature Overview

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Performance
• NFSv4 OPEN, GETATTR, LOOKUP from a Linux client all

require Reply chunks. RPC/RDMA version 2 reduces the
need for explicit RDMA operations for small and
moderately-sized RPC messages by introducing:

• Larger default inline thresholds

• Message continuation

• Extra context switches needed on client to invalidate
memory. RPC/RDMA version 2 integrates support for
remote invalidation

7

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Extensibility

• Together these facilities enable one-way messages,
control plane messages, and other extensions that can be
defined later

• XDR definition changes

• Feature probing

• Flow control improvements

8

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Reply Size Estimation

• When Reply does not fit in provisioned Write/Reply
chunks:

• New error codes enable specific Requester recovery
actions.

• Message continuation can often be used instead of a
Reply chunk.

9

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

NFS ULB version 2

• Reply size estimation requirements have been relaxed
considerably:

• When a Requester provisions an inadequate or no
Reply chunk, the Responder can use Message
Continuation.

• When a Responder returns an error reporting the
provisions it needs to send the Reply, the Requester
can retry with correctly-sized RDMA Reply resources

10

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Security

• Peer authentication

• Relies on both property exchange and message
continuation.

11

A Closer Look

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

XDR Extensibility
• RPC/RDMA version 1

/// enum rdma_proc {
/// RDMA_MSG = 0,
/// RDMA_NOMSG = 1,
/// RDMA_MSGP = 2,
/// RDMA_DONE = 3,
/// RDMA_ERROR = 4
/// };

/// union rdma_body switch (rdma_proc proc) {
/// case RDMA_MSG:
/// rpc_rdma_header rdma_msg;
/// case RDMA_NOMSG:
/// rpc_rdma_header_nomsg rdma_nomsg;
/// case RDMA_MSGP:
/// rpc_rdma_header_padded rdma_msgp;
/// case RDMA_DONE:
/// void;
/// case RDMA_ERROR:
/// rpc_rdma_error rdma_error;
/// };

/// struct rdma_msg {
/// uint32 rdma_xid;
/// uint32 rdma_vers;
/// uint32 rdma_credit;
/// rdma_body rdma_body;
/// };

13

• RPC/RDMA version 2

/// struct rpcrdma_common {
/// uint32 rdma_xid;
/// uint32 rdma_vers;
/// uint32 rdma_credit;
/// uint32 rdma_htype;
/// };

/// struct rpcrdma2_hdr_prefix
/// struct rpcrdma_common rdma_start;
/// uint32 rdma_flags;
/// };

/// struct rpcrdma2_chunk_lists {
/// uint32 rdma_inv_handle;
/// struct rpcrdma2_read_list *rdma_reads;
/// struct rpcrdma2_write_list *rdma_writes;
/// struct rpcrdma2_write_chunk *rdma_reply;
/// };

/// const rpcrdma2_proc RDMA2_MSG = 0;
/// const rpcrdma2_proc RDMA2_NOMSG = 1;
/// const rpcrdma2_proc RDMA2_ERROR = 4;
/// const rpcrdma2_proc RDMA2_CONNPROP = 5;

/// struct rpcrdma2_msg {
/// struct rpcrdma2_chunk_lists rdma_chunks;
/// uint32 rdma_rpc_first_word;
/// };

/// struct rpcrdma2_nomsg {
/// struct rpcrdma2_chunk_lists rdma_chunks;
/// };

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Transport Properties

14

Property Code XDR type Default value

Max Send size 1 uint32 4096

Receive Buffer size 2 uint32 4096

Max segment size 3 uint32 1048576

Max segment count 4 uint32 16

Reverse-direction
support 5 uint32 0

Host Authentication
Token 6 opaque<> N/A

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Credits & Flow Control
• Enable RPC-over-RDMA to support asymmetrical

operation: a message in one direction might trigger zero,
one, or multiple messages in the other direction in
response.

• Credits are requested and granted in both directions:
32-bit rdma_start.rdma_credit field is split into a pair of
16-bit subfields

• An asynchronous credit grant mechanism was added:
RDMA2_NOMSG with empty chunk lists

15

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Message Continuation
• Sender sets the RDMA2_F_MORE flag.

• Receiver concatenates the data payload of the next received
message to the end of the data payload of the received message.
There is no protocol-defined limit on the number of concatenated
messages in a sequence.

• Sender clears the RDMA2_F_MORE flag in the final message in the
sequence.

• Sender includes chunks only in the final message in a sequence.

• Credit exhaustion can occur at the receiver in the middle of a
sequence of continued messages.

16

Open Issues

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Read Chunks
• RPC/RDMA v1 allows a position zero Read chunk to

appear in an RDMA_MSG type Call. Where does a
Responder put the inline portion of such a message?

• RPC/RDMA v1 does not explicitly require an
RDMA_NOMSG type Call to have a position zero Read
chunk. Does such a message have gaps? Are they zero-
filled?

• RPC/RDMA v1 does not prevent or prohibit overlapping
Read chunks. Is the correct response ERR_CHUNK?

18

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Remote Invalidation

• Remote invalidation is currently not limited to
RDMA2_MSG and RDMA2_NOMSG type messages.

• For instance, should a Responder be permitted to use
Send With Invalidate when posting an RDMA2_ERROR
type message?

• Or, no constraints here, and allow Responder
implementers flexibility?

19

Copyright © 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

Next Steps

• Review these documents.

• There are no prototype implementations yet. Prototypes
will help identify and resolve ambiguities, controversies,
and open issues.

• Milestone states document delivery by December 2020. Is
there a plan for WGLC?

20

