Using the pNFS SCSI/NVMe Layout over Fabrics

draft-faibish-nfsv4-scsi-nvme-layout-over-fabrics-00

Sorin Faibish <faibish.sorin@dell.com>
David Black <david.black@dell.com>
Christoph Hellwig <hch@lst.de>
Motivation: Add support for new NVMe-oF transport protocol to pNFS

• **NVMe-oF**: NVMe over Fabrics
 - Fabric extension of NVMe (Non Volatile Memory Express) SSD interface

• **New storage systems support NVMe-oF transports to access NVMe-based storage**
 - The NVMe devices are faster than older SCSI devices
 - But connecting them using old transports and switches introduces inefficiencies – New faster transports are needed
 - Memory of storage servers may use persistent memory (e.g., Intel Optane)
 - New hosts can access remote persistent memory using RDMA
Motivation: extending pNFS to NVMe

• How to extend current pNFS from SCSI to NVMe
 • New transports used to connect to NVMe-oF based servers (instead of SCSI)
 • NVMe-oF transports: Fibre Channel, RDMA (e.g., iWARP) and native TCP
 • pNFS needs NVMe layout support for these new NVMe-oF transports

• Start from pNFS SCSI layout (RFC 8154), extend to support NVMe
 • Draft introduces NVMe details for pNFS servers & clients
Expanding pNFS to support NVMe

- pNFS SCSI layout [RFC8154] allows pNFS clients to directly perform I/O to block storage devices bypassing the MDS (MetaData Server).
- This draft adapts the pNFS SCSI layout to enable use of NVMe-oF
 - Provides FC, RDMA or TCP access for devices using NVMe-oF
 - Enable implementers to start from the pNFS SCSI layout and the NVMe standards (currently NVMe-oF 1.1 and NVMe 1.4) to implement the pNFS NVMe layout
 - References the NVMe-oF Transport specifications for FC, RDMA and TCP
What is needed from pNFS server?

• Requires the pNFS storage devices to support the underlying NVMe-oF Transport to provide reliable NVMe command and data delivery

• NVMe over Fabrics architecture and commands used by pNFS clients to access pNFS storage devices.

• Layers shown in diagram
• NVMe port (PortID) supports multiple NVMe-oF Transports if more than one Transport is supported by the underlying network/fabric:
 • iWARP, RoCE or both

• The diagram illustrates the layering of the RDMA Transport and common RDMA providers (iWARP, InfiniBand™, and RoCE[v2]) within the host and NVM subsystem

• Separate TCP and FC transports not shown
Transfer Protocol for pNFS/NFSv4.2 (cont.)

• NVMe-oF allows multiple pNFS clients to connect to different controllers on the same subsystem (pNFS storage device)

• An association is established between a host and a controller when the host connects to a controller’s Admin Queue

• The pNFS client also acts as a NVMe host and NVMe controllers are used as the pNFS storage devices.

• pNFS clients MAY connect to pNFS storage devices using different network protocols and different NVMe-oF transports.

• The NVM subsystem may require a host to use fabric secure channel, NVMe in-band authentication, or both.
Volume identification

• pNFS SCSI layout uses SCSI Device Identification VPD page to identify the devices used by a layout.

• NVMe-oF storage devices need to provide analogous unique identifiers based on EUI-64 and/or NGUID identifiers. Details to be worked out.

• UUID identification could be added but MUST use a large enough enum value to avoid conflict with possible future SCSI changes.
Client Fencing

- SCSI layout uses Persistent Reservations (PR) to provide client fencing.
- Both the MDS and the pNFS Clients have to register a key with the storage device, and the MDS has to create a reservation on the storage device.
- To allow fencing individual systems, each system MUST use a unique persistent reservation key.
- The MDS MUST generate a key for itself and a key for each pNFS client that accesses SCSI layout volumes before exporting a volume.
- The reservation key applies to all access by an individual pNFS client.
Client Fencing – NVMe-oF

• NVMe Reservations: Similar to SCSI Persistent Reservations.
 • MDS Registration and Reservation
 • pNFS client registration
 • Multi-host reservation used: “Exclusive Access – All Registrants”

• Fencing actions:
 • MDS preempt a client’s registration to fence client (Reservation Acquire command)
 • Registration preemption removes client from reservation, hence denies access.

• Client Recovery after Fencing:
 • MUST commit all layouts
 • Future GETDEVICEINFO calls MAY require new pNFS client registration
Volatile Write Caches

• Carry SCSI layout volatile write cache support forward to NVMe
 • pNFS server required to commit cache to stable storage on Layout Commit
• NVMe: Flush command analogous to SCSI SYNCHRONIZE CACHE command
• Unrelated: (new) RDMA Flush extension at transport layer
 • Reason: RDMA operations are reversed from NVMe-oF commands
 • E.g., NVMe-oF Write command: RDMA Read pulls data from pNFS client.
 • Don’t need to flush NVMe-oF Read data (pushed to client via RDMA Write) to stable storage
Asks from NFSv4 WG

• Existing WG milestone: “use of NVMe in accessing a pNFS SCSI Layout”
 • Current date: August 2020
• Initial (-00) draft will be submitted sometime after this meeting
 • Would like that draft reviewed by WG members
 • Expect to ask that subsequent draft version be adopted for that WG milestone
• Will want to adjust date for that milestone
 • August 2020 completion appears unlikely
 • Suggest end of year, e.g., January 2021