Metadata-based Aggregation of Telemetry Flows

Sonia Fernández, Diego R. López

NMRG virtual meeting
14.04.2020
Index

1. Introduction

2. Context Information Management

3. Telemetry Metadata

4. Conclusions
Introduction
The Scenario

- Data is the essential intake for any closed-loop system
 - Avoid poisoning: correct metadata
 - Avoid starvation: sufficient streaming
- Deal with heterogeneity
 - Multi-technology
 - Multi-domain
 - Multi-vendor
 - Multi-…
- And the lessons learned can be applied to action flows in the future, leveraging SDN
 - Intent interfaces
 - Capability models
The goal

• Support the integration of different data flows
 • Open
 • Automated
 • Secure
 • Scalable

• Deal with heterogeneity at all levels
 • Data sources
 • Data models
 • Deployment styles
 • Supporting infrastructures

• A semantic metadata framework for telemetry data
 • Founded on the current results in data model space
Applying a Semantic Model to Telemetry

• Use the model to describe data flows
 • Sources
 • Consumers
 • Elements in the flow
• And including
 • The identification of the relationships to the flow data model
 • Provenance metadata
 • Security
• Note we are not talking about modeling the whole systems
 • Only the data they provide and/or consume
 • Usable to analyze and normalize flows
 • Without the need of explicit standard alignment
• Extend descriptors
 • Include a protocol for registration, announcements, etc.
Context Information Management
Introducing ISG CIM

• Focused on mechanisms to deal with context information from many different sources
 • Sharing that information through interoperable data publication platforms.
 • Agnostic to the architecture of the applications sharing information
 • Based on an information model describing entities and relationships
• Currently focused on IoT scenarios
 • Suitable for adaptation to other ones, already documented by the ISG
CIM Architecture

• CIM specification does not define a specific architecture
• Three prototypical architectures are presented: Centralized, Distributed and Federated
• Main components:
 • Context Consumer → Request context information from the Broker (e.g. Application)
 • Context Producer/Source → Produce context information (e.g. Router)
 • Central/Distributed/Federated Broker → Response queries / Stores context information
 • Context Registry → Stores the (context) source’s context information
CIM Architecture
CIM Information Model

Entity
- + id : URI
 - Has Subject
 - Has Property

Property
- + propertyid : URI
 - Has Subject
 - Has Value

Value
- + dataType : URI

Relationship
- + relationshipId : URI
 - Has Subject
 - Has Relationship

Has Relationship
- 1..*
- 0..*

Has Subject
- 1
- 0..*

Has Object
- 1
- 0..*

Has Property
- 0..*
- 1

Has Value
- 1
- 0..*

Has Relationship
- 0..*
- 1
- 0..*
Telemetry Metadata
Telemetry Metadata

Status

• Build general patterns for metadata definition
 • Collect multiple context sources (data sources)
 • Initial definition of some information models

• Use CIM standard as a reference
 • Apply the architectural recommendations in a general architecture

• Build a Semantic Aggregator that make use of new preprocessing/messaging tools (e.g. Kafka)
Architecture

Local’s Management System

Context Source
Local Network

Semantic Aggregator
Context Registry
Context Consumers
Orchestrator

NSP’s Management System

Interworking & Exposure

Core Network + Cloud
Access Network + Edge

Context Source
NSP Network

Internet

Local’s Management System

Semantic Aggregator
Context Registry
Context Consumers
AI/ML
Big Data
Analytics
Monitoring

Local Access Network

Context Source
Local Network
Architecture

Context Sources (Data Sources):

- Network-based probes:
 - ICMP, HTTP, IPFIX, DNS, etc...
- YANG-based network devices
- In-band Telemetry (by means of P4, etc)
- Telemetry for Cloud infrastructures
- Optical devices
- TSDB
Information Model: Network-based probes

- **Probe**: hasProperties (name, format, is_connected_to)
- **Endpoint**: hasProperties (id, name, is_executed_by)
- **URI**: hasProperties (schema, host, port, path, query)
- **Credentials**: hasProperties (user, method, password)
- **Agent**: hasProperties (id, hostname)
- **Event**: hasProperties (category, duration, start, end, transport)
- **Network**: hasProperties (type, id, direction, packets, bytes)
- **Source**: hasProperties (mac, ip, port, bytes, packets)
- **Destination**: hasProperties (mac, ip, port, bytes, packets)

YAML Dictionary:
```
icmp-event:
  - id
  - version
  - status
  - request:
    - type
    - code
    - message
  - response:
    - type
    - code
    - message
```
Information Model: YANG-based devices

Device
- name
- format
- type

isconnectedTo

isdescribedBy

YANG model
- name
- properties

Endpoint
- id
- name
- hasLogin
- hasURI

URI
- schema
- host
- port
- path
- query

Credentials
- user
- method
- password

YAML Dictionary
interface:
- name
- type
- mtu
- counters
 - in-octects
 - in-pkts
 - in-unicast-pkts

module: device-interfaces
 +++rw interfaces
 +++rw interface* [name]
 +++rw name
 +++rw config
 +++ro state
 | +++ro name?
 | +++ro type
 | +++ro mtu?
 | +++ro counters
 | +++ro in-octects?
 | +++ro in-pkts?
 | +++ro in-unicast-pkts?
Conclusions
Conclusions

• Data-driven network management requires the aggregation of heterogeneous sources of data

• A semantic, metadata-based model exists for IoT context data aggregation

• We are exploring the extension of this model to network management
 • Relying on YANG and telemetry frameworks
 • On various application scenarios

• If the RG is interested, we’d be happy to document these in an I-D
 • And look for its further consolidation