
Fault Tolerant Service 
Function Chaining
MILAD GHAZNAVI ,  ELAHEH JALALPOUR,  BERNARD WONG, ALI  MASHTIZADEH,  
RAOUF BOUTABA



1

Fault Tolerant Service Function Chaining 
Keep a service function chain running after f ≥ 1 number of its 
service functions fail

Extend IETF network service header (NSH) to support fault tolerance 
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ABSTRACT

Network appliances or middleboxes such as firewalls, intru-
sion detection and prevention systems (IDPS), load bal-
ancers, and VPNs form an integral part of datacenters and
enterprise networks. Realizing their importance and short-
comings, the research community has proposed software im-
plementations, policy-aware switching, consolidation appli-
ances, moving middlebox processing to VMs, end hosts, and
even offloading it to the cloud. While such efforts can use
middlebox failure characteristics to improve their reliability,
management, and cost-effectiveness, little has been reported
on these failures in the field.
In this paper, we make one of the first attempts to perform

a large-scale empirical study of middlebox failures over two
years in a service provider network comprising thousands of
middleboxes across tens of datacenters. We find that mid-
dlebox failures are prevalent and they can significantly im-
pact hosted services. Several of our findings differ in key as-
pects from commonly held views: (1) Most failures are grey
dominated by connectivity errors and link flaps that exhibit
intermittent connectivity, (2) Hardware faults and overload
problems are present but they are not in majority, (3) Mid-
dleboxes experience a variety of misconfigurations such as
incorrect rules, VLAN misallocation and mismatched keys,
and (4) Middlebox failover is ineffective in about 33% of the
cases for load balancers and firewalls due to configuration
bugs, faulty failovers and software version mismatch. Fi-
nally, we analyze current middlebox proposals based on our
study and discuss directions for future research.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Network]: Network
Operations—network management

General Terms

Network management; Reliability

Keywords

Datacenters; Network reliability; Middleboxes
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Figure 1: Middleboxes contribute to 43% of high-
severity incidents despite being 11% of the popula-
tion (top). The top-5 categories of service impact in
these incidents caused by middleboxes (bottom).

1. INTRODUCTION
Today’s datacenters and enterprises deploy a variety of

intermediary network devices or middleboxes to distribute
load (e.g., load balancers), enable remote connectivity (e.g.,
VPNs), improve performance (e.g., proxies) and security
(e.g., firewalls, IDPS), as well as to support new traffic
classes and applications [1–4]. Given these valuable benefits,
the market for middleboxes is estimated to exceed $10B by
2016 [5], and their number is becoming comparable to that
of routers in enterprise networks [1, 6].

These benefits, however, come at a high cost: middle-
boxes constitute a significant fraction of the network capital
and operational expenses [1]; they are complex to manage
and expensive to troubleshoot [6]; and their outages can
greatly impact service performance and availability [7]. For
instance, in December 2012, a load balancing misconfigura-
tion affected multiple Google services including Chrome and
Gmail [8]. In a 2011 survey of 1,000 organizations [9], 36%
and 42% of the respondents indicated failure of a firewall
due to DDoS attacks at the application layer and network
layer, respectively; the very attack firewalls are deployed to
protect against.

Contributing to 43% of high- severity incidents 
“Demystifying the dark side of the middle: a field study 
of middlebox failures in datacenters.” IMC 2013.
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Service Function Fault Tolerance – Cont.
Most of existing solutions are snapshot based
◦ Pico Replication, SoCC 2013
◦ FTMB, SIGCOMM 2015
◦ REINFORCE, CoNEXT 2018
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Fault Tolerance for a Chain
EXISTING SNAPSHOT-BASED APPROACHES OUR APPROACH: FAULT TOLERANCE FOR AN 

ENTIRE CHAIN
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Design Choices
State piggybacking

In-chain replication
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Design Choices – State Piggybacking  
FTC’S APPROACH
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Design Choices – In-Chain Replication
EXISTING APPROACHES FTC’S APPROACH
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Fault Tolerant Chain Protocol
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Fault Tolerant Chain Protocol

18

R3

SF2

R2
1

SF1

R1
1

Replicate SF1 state in 
R1 and R2 to tolerate 

its failure (f=1)

Replicate SF1 state in 
R1 and R2 to tolerate 

its failure (f=1)



Fault Tolerant Chain Protocol
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Fault Tolerant Chain Protocol
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Fault Tolerant Chain Protocol
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Fault Tolerant Chain Protocol
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FTC’s Performance
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Network Service Header – RFC 8300
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Service Function Forwarder
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Service Function Forwarder As a Replica
SUPPORTED BY ORIGINAL NSH

Packet forwarding through a chain

OUR CONTRIBUTIONS

Extensions to NSH
◦ State management API
◦ State replication

NSH support in Click modular router
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Network Service Header Format
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Network Service Header Format – Type 2 
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Network Service Header Format – Type 2 
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Variable Length Context Headers
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Internet-Draft         Network Service Header TLVs            March 2020

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |          Metadata Class       |      Type     |U|    Length   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   Variable-Length Metadata                    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 2: NSH TLV Format

   where

      Metadata Class (MD Class): Defines the scope of the Type field to
      provide a hierarchical namespace.

      Type - Indicates the explicit type of metadata being carried.  The
      value is one from the Network Service Header (NSH) TLV Type
      registry (Section 7).

      Unassigned bit: One unassigned bit is available for future use.
      This bit MUST NOT be set, and it MUST be ignored on receipt.

      Length: Indicates the length of the variable-length metadata, in
      bytes.  In case the metadata length is not an integer number of
      4-byte words, the sender MUST add pad bytes immediately following
      the last metadata byte to extend the metadata to an integer number
      of 4-byte words.  The receiver MUST round the Length field up to
      the nearest 4-byte-word boundary, to locate and process the next
      field in the packet.  The receiver MUST access only those bytes in
      the metadata indicated by the Length field (i.e., actual number of
      bytes) and MUST ignore the remaining bytes up to the nearest 4-
      byte-word boundary.  The length may be 0 or greater.

      A value of 0 denotes a Context Header without a Variable-Length
      Metadata field.

4.  NSH Type 2 TLVs

   In [RFC8300] defined that Metadata Class 0x0000 as IETF Base NSH MD
   Class.  In this draft, metadata types are defined for the IETF Base
   NSH MD Class.

4.1.  Forwarding Context

   This TLV carries a network-centric forwarding context, used for
   segregation and forwarding scope.  Forwarding context can take
   several forms depending on the network environment.  Commonly used
   data includes VXLAN/VXLAN- GPE VNID, VRF identification or VLAN.

Wei, et al.             Expires September 4, 2020               [Page 4]



Context Headers to Piggyback State
SUPPORTED BY NSH

Packet encapsulation

Variable length metadata

OUR CONTRIBUTIONS

Extensions to NSH
◦ State piggybacking using NSH metadata
◦ Secure state piggybacking
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Summary
FTC keeps a service function chain running after f ≥ 1 of its service functions fail
◦ State piggybacking
◦ In-chain replication

Extending network service header protocol to support fault tolerant service 
function chaining
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