
Fault Tolerant Service
Function Chaining
MILAD GHAZNAVI , ELAHEH JALALPOUR, BERNARD WONG, ALI MASHTIZADEH,
RAOUF BOUTABA

1

Fault Tolerant Service Function Chaining
Keep a service function chain running after f ≥ 1 number of its
service functions fail

Extend IETF network service header (NSH) to support fault tolerance

2

Introduction
Fault Tolerant Chaining
NSH for Fault Tolerant Chaining
Conclusion

3

➜ Introduction
Fault Tolerant Chaining
NSH for Fault Tolerant Chaining
Conclusion

Service Functions (Middleboxes)

4

Network Address Translator (NAT)

Internet

Alice
192.168.10.10

Bob
192.168.10.20

NAT

Firewall

129.97.12.14

Service Function Failures

5

Demystifying the Dark Side of the Middle: A Field Study of
Middlebox Failures in Datacenters

Rahul Potharaju
Purdue University

rpothara@purdue.edu

Navendu Jain
Microsoft Research

navendu@microsoft.com

ABSTRACT

Network appliances or middleboxes such as firewalls, intru-
sion detection and prevention systems (IDPS), load bal-
ancers, and VPNs form an integral part of datacenters and
enterprise networks. Realizing their importance and short-
comings, the research community has proposed software im-
plementations, policy-aware switching, consolidation appli-
ances, moving middlebox processing to VMs, end hosts, and
even offloading it to the cloud. While such efforts can use
middlebox failure characteristics to improve their reliability,
management, and cost-effectiveness, little has been reported
on these failures in the field.
In this paper, we make one of the first attempts to perform

a large-scale empirical study of middlebox failures over two
years in a service provider network comprising thousands of
middleboxes across tens of datacenters. We find that mid-
dlebox failures are prevalent and they can significantly im-
pact hosted services. Several of our findings differ in key as-
pects from commonly held views: (1) Most failures are grey
dominated by connectivity errors and link flaps that exhibit
intermittent connectivity, (2) Hardware faults and overload
problems are present but they are not in majority, (3) Mid-
dleboxes experience a variety of misconfigurations such as
incorrect rules, VLAN misallocation and mismatched keys,
and (4) Middlebox failover is ineffective in about 33% of the
cases for load balancers and firewalls due to configuration
bugs, faulty failovers and software version mismatch. Fi-
nally, we analyze current middlebox proposals based on our
study and discuss directions for future research.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Network]: Network
Operations—network management

General Terms

Network management; Reliability

Keywords

Datacenters; Network reliability; Middleboxes

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC’13, October 23–25, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1953-9/13/10 ...$15.00..

20

81

36

 2

43

11
 1 3

0

25

50

75

100

L2 Switches L3 Routers Middleboxes Others

P
e
rc

e
n

t
C

o
n

tr
ib

u
ti

o
n

High Severity Incidents

Population

42
35

11 9 3
0

25

50

75

100

Lost connectivity

High Latency

Service Erro
r

Security
SLA

P
e
rc

e
n

t
C

o
n

tr
ib

u
ti

o
n

Figure 1: Middleboxes contribute to 43% of high-
severity incidents despite being 11% of the popula-
tion (top). The top-5 categories of service impact in
these incidents caused by middleboxes (bottom).

1. INTRODUCTION
Today’s datacenters and enterprises deploy a variety of

intermediary network devices or middleboxes to distribute
load (e.g., load balancers), enable remote connectivity (e.g.,
VPNs), improve performance (e.g., proxies) and security
(e.g., firewalls, IDPS), as well as to support new traffic
classes and applications [1–4]. Given these valuable benefits,
the market for middleboxes is estimated to exceed $10B by
2016 [5], and their number is becoming comparable to that
of routers in enterprise networks [1, 6].

These benefits, however, come at a high cost: middle-
boxes constitute a significant fraction of the network capital
and operational expenses [1]; they are complex to manage
and expensive to troubleshoot [6]; and their outages can
greatly impact service performance and availability [7]. For
instance, in December 2012, a load balancing misconfigura-
tion affected multiple Google services including Chrome and
Gmail [8]. In a 2011 survey of 1,000 organizations [9], 36%
and 42% of the respondents indicated failure of a firewall
due to DDoS attacks at the application layer and network
layer, respectively; the very attack firewalls are deployed to
protect against.

Contributing to 43% of high- severity incidents
“Demystifying the dark side of the middle: a field study
of middlebox failures in datacenters.” IMC 2013.

Service Function Fault Tolerance

6

NAT Internet

Alice

Bob

NAT Connection State
Alice ⬄Apple

Bob ⬄Bing

Service Function Fault Tolerance

7

NAT Internet

Alice

Bob
NAT

Alice ⬄Apple
Bob ⬄Bing

ReplicaNAT Connection State
Alice ⬄Apple

Bob ⬄Bing

Service Function Fault Tolerance

8

NAT Internet

Alice

Bob
NAT

Alice ⬄Apple
Bob ⬄Bing

ReplicaNAT Connection State
Alice ⬄Apple

Bob ⬄Bing✕
✕

Service Function Fault Tolerance – Cont.
Most of existing solutions are snapshot based
◦ Pico Replication, SoCC 2013
◦ FTMB, SIGCOMM 2015
◦ REINFORCE, CoNEXT 2018

9

Service Function Chains (Chains)

10

Orchestrator

Firewall NATIDPS

Data Center
Network

Fault Tolerance for a Chain
EXISTING SNAPSHOT-BASED APPROACHES OUR APPROACH: FAULT TOLERANCE FOR AN

ENTIRE CHAIN

11

0%
10%
20%
30%
40%
50%
60%

1 2 3 4 5

Dr
op

 P
er

ce
nt

ag
e

Chain Length

Throughput Drop

m1m1 mnmnm2m2

Fault Tolerant

SF1 SF2 SFm

12

Introduction
➜ Fault Tolerant Chaining
NSH for Fault Tolerant Chaining
Conclusion

Design Choices
State piggybacking

In-chain replication

13

Design Choices – State Piggybacking
FTC’S APPROACH

14

EXISTING APPROACHES

SF
Data traffic

State dissemination
SF Data traffic +

State dissemination

Design Choices – In-Chain Replication
EXISTING APPROACHES FTC’S APPROACH

15

R1

SF

R2 Rf…

Replica

SF1 SF2 SFf+1

Fault Tolerant Chain Protocol

16

SF2SF1

Fault Tolerant Chain Protocol

17

R3

SF2

R2

SF1

R1

Fault Tolerant Chain Protocol

18

R3

SF2

R2
1

SF1

R1
1

Replicate SF1 state in
R1 and R2 to tolerate

its failure (f=1)

Replicate SF1 state in
R1 and R2 to tolerate

its failure (f=1)

Fault Tolerant Chain Protocol

19

R3

SF2

R2
1

SF1

R1
1 2

2

Replicate SF2 state in
R2 and R3 to tolerate

its failure (f=1)

Replicate SF2 state in
R2 and R3 to tolerate

its failure (f=1)

Fault Tolerant Chain Protocol

20

R3
2

SF2

R2
1

SF1

R1
1

2

A replica
intercepts packets

Fault Tolerant Chain Protocol

21

R3
2

SF2

R2
1

SF1

R1
1

2

A packet
piggybacks its
state updates

Fault Tolerant Chain Protocol

22

R3
2

SF2

R2
1

SF1

R1
1

2

FTC’s Performance

23

2 3 4 5
Chain Length

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

pp
s)

NF FTC FTMB FTMB+Snapshot
3.5x higher
throughput

24

Introduction
Fault Tolerant Chaining
➜ NSH for Fault Tolerant Chaining
Conclusion

Network Service Header – RFC 8300

25

SFF3

SF2

SFF2

SF1

SFF1

SF3

Service Function Forwarder

26

SFF3

SF2

SFF2

SF1

SFF1

SF3
A service function

forwarder (SFF)
as a replica

Service Function Forwarder As a Replica
SUPPORTED BY ORIGINAL NSH

Packet forwarding through a chain

OUR CONTRIBUTIONS

Extensions to NSH
◦ State management API
◦ State replication

NSH support in Click modular router

27

Network Service Header Format

28

SFF3

SF2

SFF2

SF1

SFF1

SF3NSH header to
piggyback state

Network Service Header Format – Type 2

29

Network Service Header Format – Type 2

30

Variable length context
headers to piggyback

state

Variable Length Context Headers

31

Internet-Draft Network Service Header TLVs March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Metadata Class | Type |U| Length |
 +-+
 | Variable-Length Metadata |
 +-+

 Figure 2: NSH TLV Format

 where

 Metadata Class (MD Class): Defines the scope of the Type field to
 provide a hierarchical namespace.

 Type - Indicates the explicit type of metadata being carried. The
 value is one from the Network Service Header (NSH) TLV Type
 registry (Section 7).

 Unassigned bit: One unassigned bit is available for future use.
 This bit MUST NOT be set, and it MUST be ignored on receipt.

 Length: Indicates the length of the variable-length metadata, in
 bytes. In case the metadata length is not an integer number of
 4-byte words, the sender MUST add pad bytes immediately following
 the last metadata byte to extend the metadata to an integer number
 of 4-byte words. The receiver MUST round the Length field up to
 the nearest 4-byte-word boundary, to locate and process the next
 field in the packet. The receiver MUST access only those bytes in
 the metadata indicated by the Length field (i.e., actual number of
 bytes) and MUST ignore the remaining bytes up to the nearest 4-
 byte-word boundary. The length may be 0 or greater.

 A value of 0 denotes a Context Header without a Variable-Length
 Metadata field.

4. NSH Type 2 TLVs

 In [RFC8300] defined that Metadata Class 0x0000 as IETF Base NSH MD
 Class. In this draft, metadata types are defined for the IETF Base
 NSH MD Class.

4.1. Forwarding Context

 This TLV carries a network-centric forwarding context, used for
 segregation and forwarding scope. Forwarding context can take
 several forms depending on the network environment. Commonly used
 data includes VXLAN/VXLAN- GPE VNID, VRF identification or VLAN.

Wei, et al. Expires September 4, 2020 [Page 4]

Context Headers to Piggyback State
SUPPORTED BY NSH

Packet encapsulation

Variable length metadata

OUR CONTRIBUTIONS

Extensions to NSH
◦ State piggybacking using NSH metadata
◦ Secure state piggybacking

32

33

Introduction
Fault Tolerant Chaining
Evaluation
➜ Conclusion

Summary
FTC keeps a service function chain running after f ≥ 1 of its service functions fail
◦ State piggybacking
◦ In-chain replication

Extending network service header protocol to support fault tolerant service
function chaining

34

35

