
OAuth 2.0 Demonstration of Proof-of-Possession
at the Application Layer

IETF 107
Vancouver
Virtual Interim
May 2020

OAUTH WG

Daniel Fett
Brian Campbell

John Bradley
Torsten Lodderstedt

Michael Jones
David Waite

DPoP

draft-ietf-oauth-dpop

DPoP Overview / Refresher

A new[ish] simple and concise
approach to proof-of-possession for

OAuth access and refresh tokens using
application-level constructs and

leveraging existing JWT library support
2

draft-fett-oauth-dpop-00
was published during
IETF 105 in Prague
thereby justifying the

use of this photo

Basic DPoP flow (in ASCII)

3
* DPoP Proof syntax and semantics don’t change

*

*

4

{
"typ":"dpop+jwt",
"alg":"ES256",
"jwk":
{
"kty":"EC", "crv":"P-256"
"x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
"y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA"
}

}
{
"jti":"-BwC3ESc6acc2lTc",
"htm":"POST",
"htu":"https://server.example.com/token",
"iat":1562262616
}

Explicitly typed

The public key for
which proof-of-

possession is being
demonstrated

Unique identifier
for replay
checking

Minimal info
about the HTTP

request

Anatomy of a DPoP Proof JWT

Only valid for a
limited time

window relative to
creation time

Asymmetric
signature

algorithms only

Other stuff could
go here

Access Token Request

5

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj
oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia
WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg
4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg
grant_type=authorization_code
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

DPoP proof JWT
in HTTP header

Access Token Response

6

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-cache, no-store

{
"access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOi

Jzb21lb25lQGV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXB
sZS5jb20iLCJhdWQiOiJodHRwczovL3Jlc291cmNlLmV4YW1wbGUub3JnIiwibmJm
IjoxNTYyMjYyNjExLCJleHAiOjE1NjIyNjYyMTYsImNuZiI6eyJqa3QiOiIwWmNPQ
09SWk5ZeS1EV3BxcTMwalp5SkdIVE4wZDJIZ2xCVjN1aWd1QTRJIn19.vsFiVqHCy
IkBYu50c69bmPJsj8qYlsXfuC6nZcLl8YYRNOhqMuRXu6oSZHe2dGZY0ODNaGg1cg
-kVigzYhF1MQ",

"token_type":"DPoP",
"expires_in":3600,
"refresh_token":"4LTC8lb0acc6Oy4esc1Nk9BWC0imAwH7kic16BDC2"

}

Token type indicates that the access token
is bound to the DPoP public key

DPoP Bound Access Token
JWT & Introspection Response

7

{
"sub":"someone@example.com",
"iss":"https://server.example.com",
"aud":"https://resource.example.org",
"nbf":1562262611,
"exp":1562266216,
"cnf":
{
"jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"

}
}

Confirmation claim carries
the SHA-256 JWK

Thumbprint of the DPoP
public key to which the
access token is bound

Protected Resource Request

8

GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: DPoP eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWI
iOiJzb21lb25lQGV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbX
BsZS5jb20iLCJhdWQiOiJodHRwczovL3Jlc291cmNlLmV4YW1wbGUub3JnIiwibmJmI
joxNTYyMjYyNjExLCJleHAiOjE1NjIyNjYyMTYsImNuZiI6eyJqa3QiOiIwWmNPQ09S
Wk5ZeS1EV3BxcTMwalp5SkdIVE4wZDJIZ2xCVjN1aWd1QTRJIn19.vsFiVqHCyIkBYu
50c69bmPJsj8qYlsXfuC6nZcLl8YYRNOhqMuRXu6oSZHe2dGZY0ODNaGg1cg-kVigzY
hF1MQ
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj
oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z
WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOH0.lNhmpAX1WwmpBvwhok4E74kWCiGB
NdavjLAeevGy32H3dbF0Jbri69Nm2ukkwb-uyUI4AUg1JSskfWIyo4UCbQ

DPoP
proof

DPoP
public
key

bound
access
token

9

Current Status and Updates

Traveled through Frankfurt retuning
from the 4th OAuth Security

Workshop where DPoP was largely
conceived thereby justifying the use

of this photo

draft-ietf-oauth-dpop
l -00 WG draft published on April 1st (no joke)
l -01 published on May 1st

l (not insignificant) Editorial updates
l More formally define the DPoP Authorization header scheme
l Define the 401/WWW-Authenticate challenge

l With an algs param
l Added "invalid_dpop_proof" error code for DPoP errors in a token

request
l Fixed up and added to the IANA section
l Added "dpop_signing_alg_values_supported" authorization server

metadata
l Moved the Acknowledgements into an Appendix and added a bunch of

names (best effort looking back at emails)
10

11

[some] Open Questions

Currently pandemic fighting by self-isolating at home
in Denver thereby justifying the use of this photo

Threat Model & Objectives
l Are not entirely clear
l But sometimes also maybe overly specific
l It’s a bit of a Rorschach test
l Honestly, I’m hoping Dr. Daniel Fett can help here

12

Attacker Model

13

Attacker Model Cont.

14

Attacker Model Cont.

15

Symmetric crypto is significantly
more efficient than asymmetric

l True but there are other costs/complexities
l Real world implications unquantified
l A couple different potential approaches (at least)

l Key distribution
l Key agreement

l Consider this closed (for now anyway) coming out of the
pre #107 interim meeting and WG adoption

16

Difficulties with `jti`
l Issues:

l Detecting/preventing replay via `jti` can be very problematic for large-scale
deployments (also exacerbating inefficiencies asymmetric crypto)

l Can interfere with idempotence and retry
l Current situation:

l `iat` can also limit replay window
l replay check on `jti` is only a SHOULD and also qualified “within a reasonable

consideration of accuracy and resource utilization, a JWT with the same jti value
has not been received previously”

l Some options/ideas … ?
l Explicitly mention that the replay space is qualified by the URI and method thus

reducing the scope of data replication needed
l There was a mention of splitting path out from htu

l Further loosen/qualify (like perhaps a MAY)
l Drop the tracking requirement all together
l Something else…

17

Signal that the RT is bound?
l Issue:

l “useful to be able to have DPoP refresh tokens and Bearer access tokens as a
transition step” but “It seems like the spec requires the same token_type for both
access tokens and refresh tokens” - IIW summary
l Note that token_type applies to the access token per RFC 6749

l Current situation:
l RTs are only bound for public clients (this needs apparently needs better

treatment in the draft)
l DPoP access tokens are (most likely) useable as Bearer access tokens
l Does the client need a signal?

l An option/idea … ?
l A new token endpoint response parameter could be introduced

l i.e. “the_refresh_token_in_this_here_response_is_dpopped”: true
18

Client Metadata?
l “were supportive of defining … [Client] Registration

Metadata to declare support for DPoP ... [which] might
[be] supported token_type values.” – IIW summary

l But the utility of client metadata isn’t entirely clear

19

Downgrades, Transitional Rollout &
Mixed Token Type Deployments

l JWT: “in the absence of [application
specific] requirements, all claims that
are not understood by
implementations MUST be ignored.”

l Introspection: “implementations MAY
extend this structure with their own
service-specific response names”

l RFC 6750 is silent on it
l Ergo, DPoP bound access tokens are

(most likely) useable as Bearer
access tokens at existing RFC 6750
protected resources

l New policy and implementation can
be introduced

20

In my opinion, we don’t want to do this.
And in reality, I don’t think we really can.

Freshness & Scope of Signature
l Issue:

l “[no] guarantees that the DPoP signature was freshly generated, as there is no
nonce from the server incorporated into the signature.”

l Current Situation:
l `iat` doesn’t keep it fresh with respect to pre-computation by an adversary who

somehow (XSS?!) can use the private key but not steal it
l No challenge/response was intentional

l Some options/ideas … ?
l It’s sufficiently okay as is
l “People agreed that having a server nonce would add additional security” and

“[someone is] already… providing the nonce as a WWW-Authenticate challenge”
value– IIW summary

l Incorporate a hash of the authorization code, refresh token, access token, other
artifact into the DPoP proof

l Other… 21

22

* Maybe Bangkok in the fall

