
draft-meyerzuselhausen-oauth-iss-auth-resp
Karsten Meyer zu Selhausen, Daniel Fett

OAuth Interim Meeting, Dec. 7 2020

What are Mix-Up Attacks?

Mix-Up Attack Overview
● Goal: Steal authorization code or access token
● Idea: Trick client to send credentials to AS controlled by an attacker (A-AS)

instead of honest AS (H-AS)
● Precondition: Client supports multiple AS, one controlled by an attacker

○ Attacker registers client at his AS using dynamic client registration
○ Attacker compromises an AS

● Different variants with additional preconditions
○ Possible for code and implicit grant
○ OIDC variant

Mix-Up Attack Variant
● Precondition: Attacker can manipulate the first request

How to Defend Against Mix-Up?

First Discussions
● Confidential Clients?
● PKCE?
● Per-AS Redirect URIs?
● iss-like Parameter?

Since then:

● Gathered practical experiences
● Refined security and threat

considerations 0th OAuth Security Workshop, Darmstadt, 2015

Session between victim, client, attacker (A-AS) and H-AS

Are Confidential Clients Safe?
No: Attacker can inject stolen code into authorization response in another session (under his
control) with the client and H-AS. (Code Injection Attack)

Client will redeem the stolen code with credentials and give attacker access to victim’s protected
resources.

Session between
attacker, client
and H-AS.

Does PKCE help?
With PKCE: Correct code verifier required to redeem code. PKCE Chosen Challenge Attack:

1. Attacker takes code_challenge from second session with the same client and H-AS,
2. injects it into the forged authorization request, and
3. runs a code injection attack as before (his client will use correct code_verifier).

Session between victim, client, attacker (A-AS) and H-AS

Session between
attacker, client
and H-AS.

code_challenge

(created by
Client for AS)

The Core of Mix-Up Attacks

AS for this
flow is A-AS

Idea: Add “Source Identifier” to Auth Response
Add information about the AS to the authorization response.

Using existing mechanisms:

● Clients register a separate redirect URI for each AS
● AS matches full redirect URI against registered URI (no variable parts)
● Clients match URI of authorization response and AS’s redirect URI

Per-AS Redirect URIs: Problems
While only using existing mechanisms, this solution...

● … requires a lot of care at the client’s side.
E.g., how to encode and manage AS identifiers.

● … has subtle pitfalls.
E.g.: redirect URI must be unique for each combination of
(authorization endpoint URI, token endpoint URI).

● … is not suitable for ecosystems with centralized client registration.

● … can be circumvented:

○ With dynamic client registration:
Attacker-AS can modify registered redirect URI to use same as H-AS.

○ In combination with client impersonation:
Attacker registers new client at H-AS with the redirect URI of A-AS.

Robust Solution: iss Parameter.

iss: Technical Overview

The iss Parameter
● Idea: Add issuer identifier (as defined in RFC8414) to authorization response
● Example authorization response:

HTTP/1.1 302 Found
Location: https://client.example/cb?
 code=x1848ZT64p4IirMPT0R-X3141MFPTuBX-VFL_cvaplMH58
 &state=ZWVlNDBlYzA1NjdkMDNhYjg3ZjUxZjAyNGQzMTM2NzI
 &iss=https%3A%2F%2Fhonest.as.example

● Enables the client to determine who issued the authorization response

The iss Parameter
● AS supporting this specification MUST add the iss parameter to all

authorization responses, including error responses
● Example error response:

HTTP/1.1 302 Found
Location: https://client.example/cb?
 error=access_denied
 &state=ZWVlNDBlYzA1NjdkMDNhYjg3ZjUxZjAyNGQzMTM2NzI
 &iss=https%3A%2F%2Fhonest.as.example

Providing the Issuer Identifier
● AS MUST provide its issuer identifier
● If AS metadata is used:

○ iss parameter MUST be identical to AS metadata
○ AS MAY provide issuer identifier additionally by other means (out of scope)

● If AS metadata is not used:
○ Use deployment-specific ways to provide identifier (e. g. static configuration)

Validation of the Issuer Identifier
● Clients MUST compare iss parameter to issuer identifier of the AS where the

authorization request was sent to
○ MUST reject authorization response if they do not match

● If AS metadata is not used:
○ e. g. use statically configured expected iss value for each AS

● Clients MUST NOT allow multiple AS to use the same issuer identifier during
registration or configuration

Authorization Server Metadata
● authorization_response_iss_parameter_supported

○ Boolean value indicating whether the authorization server provides the iss parameter in the
authorization response.

Security Considerations

Is this Secure?
Most likely, yes:

Security of the iss parameter against mix-up attacks was proven in a formal web
model.

Usual disclaimer: Models make certain assumptions.

Daniel Fett, Ralf Kuesters, Guido Schmitz: A Comprehensive Formal Security Analysis of OAuth 2.0, https://arxiv.org/abs/1601.01229

https://arxiv.org/abs/1601.01229

Should the iss parameter be integrity protected?
● JARM could be used to protect authorization response
● Reminder: Client receives authorization response from honest AS

● If the attacker can tamper the authorization response he has direct access to
the code and does not need a mix-up attack

Answer: Integrity protection is not necessary for mix-up prevention.

Correlation with JARM and OIDC
● Alternative countermeasures to mix-up attacks are possible
● If issuer identifier is already included in authorization response, iss MAY be

omitted
○ Examples:

■ OpenID Connect hybrid flow (response_type=code id_token)
● iss in ID token

■ JWT Secured Authorization Response Mode (JARM)
● iss in JWT response document

○ If an authorization response contains multiple issuer identifier the client must reject the
response if these identifiers do not match

○ If JARM is used, iss parameter MUST NOT be used (JARM forbids additional parameters)

Mix-Up Mitigation and the Security BCP
So far, draft-ietf-oauth-security-topics recommends/mandates

1. precise redirect URI checking + per-issuer redirect URIs
2. or non-standard iss parameter.

Target: Make (2.) the default and provide a standard for it.

Details TBA.

Implementations

Implementations of the iss Parameter
● yes® ecosystem
● Support in connect2id since version 10.2
● Positive feedback from other implementers

Next Steps

Next Steps
● Working Group Adoption
● Further Feedback

