## Updates on QUIC Over In-sequence Paths with Different Characteristics

Nicolas KUHN

nicolas.kuhn@cnes.fr





#### **In-sequence paths with different characteristics**

## Satellite systems:

- Point-to-point links or TV broadcast
- Use as an access technology for remote locations
- Backup and rapid deployment of new services
- Transit networks
- Backhaul of various types of IP networks
- Satellite: IP network segment one part of the end-to-end path

## User traffic can experience a path that includes:

- Satellites capacity (long delay link)
- With a wide variety of other network technologies (Ethernet, cable modems, WiFi, cellular, radio links, etc)







## **Typical GEO satellite-based Internet access**



|              | « Internet »              | Satellite ISP Network | Satellite Access Network | Local Access Network |
|--------------|---------------------------|-----------------------|--------------------------|----------------------|
| Data<br>rate | High                      | High                  | Variable                 | Average              |
| Latency      | Low Low                   |                       | High                     | Low                  |
| Loss         | No loss Congestion losses |                       | No loss                  | Loss if Wi-Fi        |

## **Typical GEO satellite-based Internet access**



Paths with different characteristics

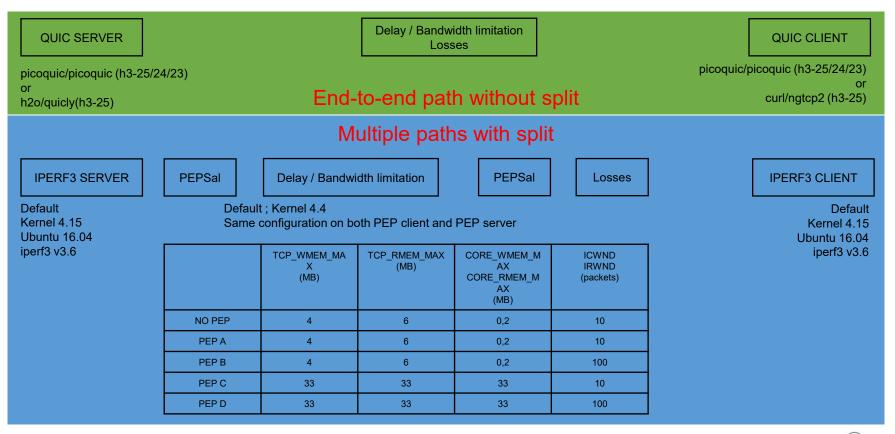
|              | Path #1 | Path #2           | Path #3  | Path #4       | END-TO-END                            |
|--------------|---------|-------------------|----------|---------------|---------------------------------------|
| Data<br>rate | High    | High              | Variable | Average       | Variable                              |
| Laten<br>cy  | Low     | Low               | High     | Low           | High                                  |
| Loss         | No loss | Congestion losses | No loss  | Loss if Wi-Fi | Congestion losses and<br>Wi-Fi losses |

Complex for end-to-end protocols when local break-out is not possible

- Solution #1 : adapt the end-to-end protocols
- Solution #2 : inform end point of the path characteristics

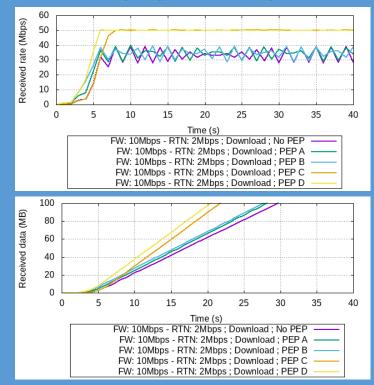
## Definition of scenarios in draft-kuhn-quic-4-sat-05

| Case                                                    | Download path (Mbps) | Upload path (Mbps) | Traffic                                                | Loss         |
|---------------------------------------------------------|----------------------|--------------------|--------------------------------------------------------|--------------|
| Medium public satellite broadband access                | 50                   | 10                 | Download and upload 100 MB                             | None         |
| Medium public satellite broadband access                | 50                   | 0.5                | Download 100 MB                                        | None         |
| Medium public satellite broadband access                | 50 -> 10 (after 5s)  | 10                 | Download 100 MB                                        | None         |
| Loss-free large public<br>satellite broadband<br>access | 250                  | 3                  | Download 100 MB – wait 10s<br>– repeat Download 100 MB | None         |
| Lossy large public<br>satellite broadband<br>access     | 250                  | 3                  | Download 100 MB                                        | Uniform (1%) |


#### Question on the performance comparison between

- Multiple local paths
- In-sequence paths






#### **Exploited plate-forme for tests**





#### Focus on the 50 Mbps / 10 Mbps use-case



#### Multiple paths with split

#### With TCP-Proxy:

- Capacity to reach channel capacity
- Reduced transmission time

#### Proposed objectives :

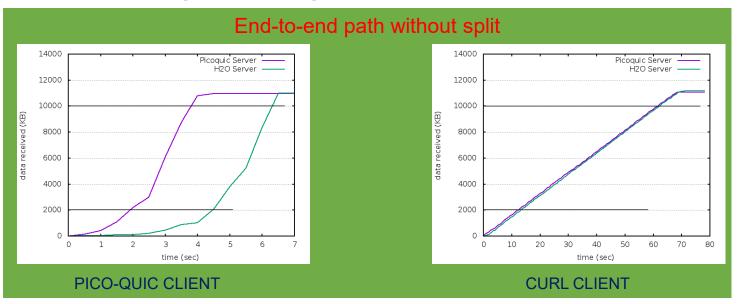
- 2MB: 3 sec
- 10 MB: 5 sec
- 100MB: 20 sec



#### Focus on the 50 Mbps / 10 Mbps use-case



- Issue in the case H20 server and PICO-QUIC client and 100 MB
  - At PICO-QUIC CLIENT: "[picoquic\_retransmit\_needed]: Too many retransmits of packet number 6350, disconnect"
  - Managed by the MAX\_ACK\_DELAY and ACK\_DELAY\_EXPONENT parameters by PICO-QUIC SRV
- PICO-QUIC SRV show better performance
  - congestion control is BBR but trend confirmed with RENO
  - Impact of other parameters (e.g. INITIAL\_CWND of INITIAL\_RTT) ?





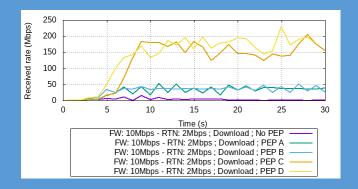

8) © cner

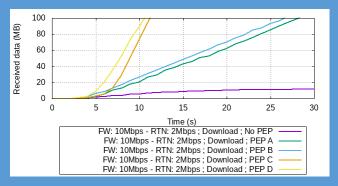


#### Focus on the 50 Mbps / 10 Mbps use-case



- PICO-QUIC client
  - PICO-QUIC server : the objectives are met
  - H20 server : the objectives are not met
- CURL client (any server)
  - The objectives are not met




10) <sub>© cner</sub>

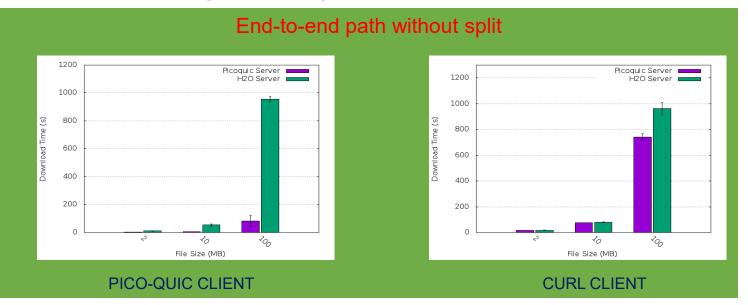
#### Focus on the 250 Mbps / 3 Mbps use-case / 1% random loss

Multiple paths with split





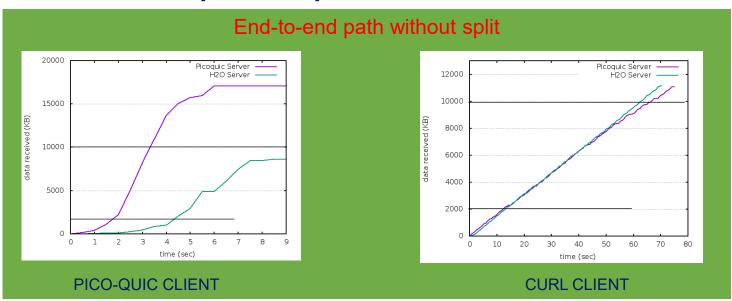
With TCP-Proxy:


- Capacity to reach channel capacity
- Reduced transmission time
- Local recovery

Proposed objectives :

- 2MB: 3 sec
- 10 MB: 6 sec
- 100MB: 10 sec




#### Focus on the 250 Mbps / 3 Mbps use-case / 1% random loss



- Trends of the 50 Mbps / 10 Mbps use case are exaggerated
- PICO-QUIC at both client and servers exhibit better performance
  - But still does not reach the available bottleneck limited to 50 Mbps (flow control limits are reached)
- The difference between PICO-QUIC client and CURL client are less important than in other use case



#### Focus on the 250 Mbps / 3 Mbps use-case / 1% random loss



• PICO-QUIC client and server is the only combination that meets the objectives



# Solution #2 : inform end point of the path characteristics



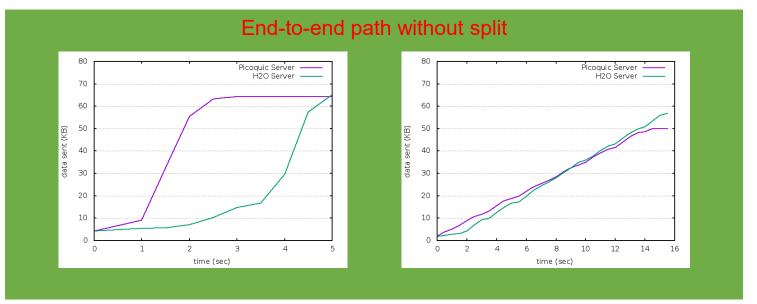
- Designing a CC that is relevant for all deployment cases may not be relevant
- Knowing about the path characteristics can help in adapting the CC in specific deployment scenarios
  - Tuning RTT\_INIT
  - Tuning flow control parameters (MAX\_STREAM\_DATA)
- See draft-kuhn-quic-0rtt-bdp-06 for how to do it in QUIC
  - There is also a strawman algorithm in the draft on how to safely jump to the available capacity



## Why PICOQUIC meets objectives ?



Different default transport parameters


|                    | picoquic client/server | h2o server | Curl client |
|--------------------|------------------------|------------|-------------|
| MAX_PACKET_SIZE    | 1440B                  | 1280B      | 1280B       |
| INITIAL_CWND       | 10 * 1440              | 10 * 1280  | 10 * 1280   |
| INITIAL_RTT        | 250ms                  | 100ms      |             |
| ACK_RATIO          | 2 :1                   | 2 :1       | 2:1         |
| ACK_MAX_DELAY      | 10ms                   | 25ms       | 25ms        |
| ACK_DELAY_EXPONENT | 3                      | 10         | 3           |
| Congestion control | BBR                    | Reno       | N.A.        |

 On going investigations to assess what parameters are game changers

## Why PICOQUIC meets objectives ?



• ACK strategy (50 Mbps / 10 Mbps use case)



- PICOQUIC implements ACK coalescing
  - Starts with ACK ratio 2:1 but quickly increases it to 10:1

## Next steps



- Further work on game-changer parameters for the satellite usecase and implement 0-RTT draft
- PICOQUIC implements non standard parameters or algorithms that are very relevant for SATCOM use-case
  - Are they relevant for other cases ? (e.g. ACK management)
  - PICOQUIC can still do better by increasing flow control limits for high BDP use-cases
- Integrate other QUIC implementations
- Release the code that has been used

