QuNetSim

A (qu)antum (net)work
(sim)ulator

Stephen Di Adamo
TQSD - LTI - TU Munich

What is QuNetSim?

QuNetSim: What is it?

- A Python framework for simulating quantum networks with classical and
quantum connections

Quantum Network

“Hello”.

“Hello”

Alice _ Bob
Classical .“ g Classical
Processor - Processor
Quantum Quantum
Processor Processor

QuNetSim: What does it do?

- Simulates the network and application layers of a quantum network

Simulates a multi-node communication network. Each node in the network has
the ability to process classical and quantum information

- Composed of three main components: Host, Transport, and Network

Alice Bob Eve
Classical “EPR Incoming” Classical ‘EPR Incoming” Classical
Processor Processor Processor
Quantum .‘% Quantum h‘% Quantum
Processor - Processor -y Processor

& &
e e

QuNetSim: What does it do?

- Hosts:
Act as the nodes / routers in a network
Can process and store quantum and classical information
Can act as either an end node or a routing node

- End node: Runs an application

- Relaying node: Can act as a eavesdropper / attacker
Are preprogrammed to run commonly used protocols

Alice
Classical '

Classical Storage
Processor
Quantum Qubit Storage
Processor

QuNetSim: What does it do?

- Transport:
- Ensures information is encoded correctly and packetizes it
- Ensures EPR pairs are generated between nodes when they are needed (e.g. teleportation and
superdense coding)
- Decodes packets for the Host

Alice

Classical EPR Incoming -

payload type | sequence number

Processor

Quantum .(“) - @
Processor — EPR Incoming

QuNetSim: What does it do?

- Network:
- Connects hosts through multi-node routes
- Can be programmed to use a custom routing algorithm
- Can randomly drop packets or apply errors to qubits in transmission
- Establishes multi-hop entanglement (using entanglement swapping)

Alice Bob Eve
Classical “EPR Incoming? Classical ‘EPR Incoming” Classical
Processor Processor Processor
Quantum .‘! Quantum h‘.‘ Quantum
Processor - Processor -y Processor
&b, &b,
= =

QuNetSim: What does it do differently?

Many common quantum networking protocols are built in
Quantum teleportation
Superdense coding
EPR generation
GHZ generation
Key distribution
Addressable quantum and classical memories

Simulates the network layer

Allows for easily programmable eavesdropping attacks
Uses various qubit simulators (e.g. ProjectQ, CQC, etc.)
Allows for unsynchronized protocols

QuNetSim: Pros and cons

- QuNetSim

- A network simulation framework for quantum networking that simulates the application and
network layers of a quantum network.

- Pros:

High level functionality, easy for beginners to use

Can program many simulation scenarios under various network configurations
Can test routing protocols

Lots of (optional) logging messages, clear what is happening behind the scenes

- Cons:
- Channel models at the moment are simplistic, not enough physical realism
- Not good for large scale simulations
- Assumes a packet based quantum internet

QuNetSim: Who should use it?

- Beginners: QuNetSim is an educational tool. It is a high-level simulator that
makes it easy to simulate quantum protocols.

- Instructors: Because of high-level coding style, QuNetSim can be used by
instructors for teaching and demonstrating.

- Researchers: QuNetSim does not yet accurately simulate quantum physics,
but it can be used to test for robustness and correctness of quantum protocols
as a first development stage.

Examples

1) Define the sender’s action

def protocol_1(host, receiver):

Sender protocol for sending 5 EPR pairs.

Args:

host (Host): The sender Host.

receiver (str): The ID of the receiver of the EPR pairs.
for i in range(5):

print('Sending EPR pair %d' % (i + 1))

epr_id, ack_arrived = host.send_epr(receiver, await_ack=True)

if ack_arrived:
Receiver got the EPR pair and ACK came back
safe to use the EPR pair.
q = host.get_epr(receiver, q_id=epr_id)
print('Host 1 measured: %d' % g.measure())
else:
print('The EPR pair was not properly established')
print('Sender protocol done')

2) Define the receiver’s action

def protocol_2(host, sender):

Receiver protocol for receiving 5 EPR pairs.

Args:
host (Host): The sender Host.
sender (str): The ID of the sender of the EPR pairs.

for _ in range(5):
Waits 5 seconds for the EPR to arrive.
q = host.get_epr(sender, wait=5)
q is None if the wait time expired.

if g is not None:
print('Host 2 measured: %d' % q.measure())
else:
print('Host 2 did not receive an EPR pair')
print('Receiver protocol done')

3) Setup the network & initiate

network = Network.get_instance()
nodes =" [*A%, "B, iC']
network.start(nodes)

host_A = Host('A')
host_A.add_connection('B")
host_A.start()

oNOOULEAE WN R

host_B = Host('B"')
host_B.add_connection('A")
host_B.add_connection('C")
host_B.start()

host_C = Host('C")
host_C.add_connection('B")
host_C.start()

network.add_host(host_A)
network.add_host(host_B)
network.add_host(host_C)

host_A. run_protocol(protocol_1, (host_C.host_id,))
host_C.run_protocol(protocol_2, (host_A.host_id,))

Example: Routing with entanglement

def generate_entanglement(host):

Generate entanglement if the host has nothing to process (i.e. is idle).
while True:
if host.is_idle():
host_connections = host.get_connections()
for connection in host_connections:
if connection['type'] == 'quantum':
num_epr_pairs = len(host.get_epr_pairs(connection['connection']))
if num_epr_pairs < 4:
host.send_epr(connection|['connection'], await_ack=True)

1
2
3
4
5
6
7
8

time.sleep(5)

def routing_algorithm(di_graph, source, target):

Entanglement based routing function. Note: any custom routing function must
have exactly these three parameters and must return a list ordered by the steps
in the route.

Args:
di_graph (networkx DiGraph): The directed graph representation of the network.
source (str): The sender ID
target (str: The receiver ID
Returns:
(list): The route ordered by the steps in the route.

co~NOOUTEA WNRE

entanglement_network = nx.DiGraph()
nodes = di_graph.nodes()
Generate entanglement network
for node in nodes:
host = network.get_host(node)
host_connections = host.get_connections()
for connection in host_connections:
if connection['type'] == 'quantum’:
num_epr_pairs = len(host.get_epr_pairs(connection['connection']))
if num_epr_pairs == 0:
entanglement_network.add_edge(host.host_id, connection['connection'], weight=1000)
else:
entanglement_network.add_edge(host.host_id, connection['connection'], weight=1. / num_epr_pairs)

try:

route = nx.shortest_path(entanglement_network, source, target, weight='weight"')
' + str(route) + '

return route
except Exception as e:
Logger.get_instance().error(e)

Example: CHSH Game

Rules:

Referee sends an x, y = O or 1 uniformly random to Alice and Bob

Alice and Bob receive x and y and send back a, b = 0 or 1 back to the referee
They winifa XORb=xANDy

Alice and Bob cannot communicate once the game starts

Referee:

for i in range(PLAYS):
x = random.choice([0, 1])
ref.send_classical(alice_id, str(x))
y = random.choice([0, 1])
ref.send_classical(bob_id, str(y))

alice_response = ref.get_classical(alice_id, seq_num=i, wait=5)
bob_response = ref.get_classical(bob_id, seq_num=i, wait=5)

a = int(alice_response.content)
b = int(bob_response.content)

print('X, Y, A, B — %d, %d, %d, %d' % (x, y, a, b))
if x&y==a”* b:

print(‘'Winners!"')

wins += 1
else:

print('Losers!')

Alice:

for i in range(PLAYS):
referee_message = alice_host.get_classical(referee_id, seq_num=i, wait=5)
x = int(referee_message.content)
epr = alice_host.get_epr(bob_id)

it o —
res = epr.measure()
alice _host.send_classical(referee_id, str(res))
else:
epr.H()
res = epr.measure()
alice_host.send_classical(referee_id, str(res))

for i in range(PLAYS):
referee_message = bob_host.get_classical(referee_id, seq_num=i, wait=5)

y = int(referee_message.content)
epr = bob_host.get_epr(alice_id)

if v == 0:
epr.ry(-2.0 x math.pi / 8.0)
res = epr.measure()
bob_host.send_classical(referee_id, str(res))
else:
epr.ry(2.0 x math.pi / 8.0)
res = epr.measure()
bob_host.send_classical(referee_id, str(res))

More examples:

See documentation: https://tasd.github.io/QuNetSim/
See code: https://github.com/tgsd/QuNetSim/tree/master/examples

https://tqsd.github.io/QuNetSim/
https://github.com/tqsd/QuNetSim/tree/master/examples

How does it work?

QuNetSim: How does it work?

- Uses Python threading

- Hosts:
- Runidle on a thread awaiting incoming packets to process that arrive in a packet queue
- Packets are processes according to the defined protocol in the header

- Network:
- Runsidle on a thread awaiting incoming packets into a queue to process and route
- Triggers hosts to perform certain operations when needed like relaying packets
- Adds packets to host packet queues

Alice

Classical
Processor

Quantum Packet? No. Packet? No. Packet? No. Packet? Yes!

Processor

QuNetSim: How does it work?

- Uses pre-existing qubit simulators
- ProjectQ
- Open-source software framework for quantum computing started at ETH Zurich
- CQC/SimulaQron
- Classical-quantum combiner (CQC) interface from QuTech / TU Delft
- EQSD
- A TQSD built, lightweight qubit simulator
- Your own backend!
- We've designed the code that the qubit and network backends are easily replaceable

Future of QuNetSim:

- We’ll be giving a Quantum Networking lecture using QuNetSim for homework

- Attempt to interface with real quantum hardware

- Improve the realism and performance of QuNetSim so it can be better used for
research

Thank you!

Questions?

