
IETF RATS WG:
Virtual Interim

2020-02-05

Agenda

Time in PST
• 7:00 – 7:05 Agenda bash / note takers (5min)
• 7:05 – 7:10 Use case & arch status - Michael Richardson (5 min)
• 7:10 – 7:15 EAT draft - UEID claim - Laurence Lundblade (5 min)
• 7:15 – 7:30 EAT draft - Submods claim - Laurence Lundblade (15 min)
• 7:30 – 7:45 EAT draft - Debug and Boot State claims - Laurence Lundblade (15 min)
• 7:45 – 8:00 EAT draft - Claims characteristics topic - Laurence Lundblade (15 min)
• Etherpad:

• https://etherpad.ietf.org/p/notes-ietf-rats-vi-2020-02-05

RATS Architecture Design Team

WHO:

Dave Thaler

Xialing (Frank) Xia

Wei (William) Pan

Henk Birkholder

Thomas Fossati

Monty Wiseman

Ned Smith

Eric Voigt

WHEN: Tuesday 10am
EST.

8 meetings since
IETF106

ISSUES: 8 open, 2
closed

Pull requests: 2 open,
21 closed

Draft-01 posted

● https://www.ietf.org/rfcdiff?url1=draft-ietf-rats-a
rchitecture-00&url2=draft-ietf-rats-architecture-01

● Added Composite Attester
● Filled in Conceptual messages
● Added Topological Models
● Added Diagrams
●

https://www.ietf.org/rfcdiff?url1=draft-ietf-rats-architecture-00&url2=draft-ietf-rats-architecture-01
https://www.ietf.org/rfcdiff?url1=draft-ietf-rats-architecture-00&url2=draft-ietf-rats-architecture-01

Still to do

● Introduction!
● Still discussion about terminology
● WG needs to decide if they want use cases in

the architecture document.
– if so, all of them? How many? What level of detail?

● explanation of Layered approach
● please review now, probably finish by IETF107.

RATS Virtual Interim
Feb 2020
EAT Claims Discussion
Laurence Lundblade

UEID Size Discussion

Options:
1. Permanent limit at 128 bits
2. Require 128 bits now, allow for 256 bits
3. Require 256 bits now

People Devices/person Resulting database size Scenario likelihood Discussion

10 billion 100 trillion Highly realistic and fully expected 128 bits is enough

10 billion 100,000 quadrillion Edge of what we might expect 128 bits may be marginal

100 billion 1,000,000 100 quadrillion Speculative – devices per mammal,
nanobots…

Need a least 192 bits

UEID sizing is not the same as for IP addresses
• UEIDs must never be reassigned or reused over time or space
• NOT IP connected; bus connected, Bluetooth connected, serial port connected…
• There are likely to be very large databases of devices in IoT backend services

Should randomly generated UEID be 128 bits or 256 bits?

Database size 128 bits 192 bits 256 bits

trillion 2 * 10^-15 8 * 10^-35 5 * 10^-55

quadrillion 2 * 10^-09 8 * 10^-29 5 * 10^-49

100 quadrillion 2 * 10^-05 8 * 10^-25 5 * 10^-45

People Devices/person subsystems / device Database portion of population Resulting database size

10 billion 100 10 .1 trillion

10 billion 100,000 10 .1 quadrillion

100 billion 1,000,000 10 .1 100 quadrillion

Database size 128 bits 192 bits 256 bits

trillion 60,000 years 1024 years 1044 years

quadrillion 8 seconds 1014 years 1034 years

100 quadrillion 8 microseconds 1011 years 1031 years

Database Size

Probability of collision in one instance of database calculated by birthday attack

Time to collision assuming 10% of database changes per year

PR – New submods structure
• Each submodule feeds claims to the attester

• The chip / system architecture allows the Attester to know
which claims come from which submodule

• Each submodule has
• A string name
• Claims…
• Indicator of attachment strength

• Claims are NOT inherited
• Each submodule has its boot and debug stated, OEM ID,

Version…

• Two types
• No signing key: feeds individual claims to attester
• With a singing key / subordinate attester: feeds a fully

serialized and signed EAT to attester
• (Possibly a third type that feeds a hash of serialized claims)

Mobile phone

TEE (main)

Attester

WiFi (submodule)

GPS (submodule)

Android (submodule)

Audio / video
playback
(submodule)

Cell modem / phone
(nested)

Mobile phone example; submods all on internal bus

Android App

Attester

Unsigned claims over bus Signed token over bus

Signing key 2

Signing key 1

Description of changes in the PR
• Unifies signed and unsigned submodules; both now under submods
• The submods part of a token is a map with one submodule per entry
• submod_name replaced by putting the name in the submods map label / key
• The nested_eat claim is removed
• A signed submodule, a signed encoded token (formerly a nested_eat) is a map

entry in submods

• New submod_attachment claim is added
• Described how the submodule is attached to the attester
• Enumerated: unspecified, device internal, PCB internal, chip internal

Submods Example

/ submods / 20: {
“wifi” : {

/ attachment_type / 16: 3 / pcb_internal /
/ nonce / 7:h’87f0e6…’
/ oemid / 12:h’653a… ‘ / The OUI of the WiFi maker /

}

“audio” : {
/ attachment_type / 16: 4 / chip_internal /
/ nonce / 7:h’87f0e6…’
/ oemid / 12:h’6c4573a… ‘ / The OUI of the audio maker /

}
“modem” : / A full nested and signed EAT (not shown) /

Alternate Submods Example
/ submods / 20: [

[/ Array of three things: attachment type, name and claims /
3 / attachment_type pcb_internal /
“wifi” / Name of subsystem /
{

/ nonce / 7:h’87f0e6…’
/ oemid / 12:h’653a… ‘ / The OUI of the WiFi maker /

}
],

[/ Array of three things: attachment type, name and claims /
4 / attachment_type chip_internal /
“audio” / Name of subsystem /
{

/ nonce / 7:h’87f0e6…’
/ oemid / 12:h’6c4573a… ‘ / The OUI of the audio maker /

}
],
[/ Array of three things: attachment type, name and nested EAT /

4 / attachment_type chip_internal /
“modem” / Name of subsystem /
<> / full nested EAT, not shown /

]
]

PR for debug states
• Previously array of four independent Booleans:

boot_state_type = [

secure_boot_enabled=> bool,

debug_disabled=> bool,

debug_disabled_since_boot=> bool,

debug_permanent_disable=> bool,

debug_full_permanent_disable=> bool

]

• Now similar, but an enumerated type with five states
debug_disable_level = (

not_reported: 0,

not_disabled: 1,

disabled: 2, May have been enabled earlier
disabled_since_boot: 3,

permanent_disable: 4, Only the manufacturer can enable
full_permanent_disable: 5 Not even the manufacturer can enable

)

Discussion on debug states
debug_disable_level = (

not_reported: 0,

not_disabled: 1,

disabled: 2, May have been enabled earlier

disabled_since_boot: 3,

permanent_disable: 4, Only the manufacturer can enable

full_permanent_disable: 5 Not even the manufacturer can enable

)

This applies to HW or broad system SW debug facilities, not to in-process
debuggers like gdb.

With the new non-inheritance submods, this is not inherited. Each subsystem must
indicate its debug state.

When a debug system has access to or effects multiple submods, each submod
must still report its stated individually.

Claims Characteristics PR, slide 1
General advice on claim design; may relates more to IANA registry

• Interoperability and Relying Party Orientation
• Design claims so relying parties can understand what they mean

• OS and Technology Neutral
• Not specific to operating system, hardware, programing language,

manufacturer, sub industry
• E.g., don’t orient to TEE, TPM, Unix, mobile phones, Javascript…

• Security Level Neutral
• Include claims that are good for high security environments (TPMs, secure

elements) and low security environments (user mode apps).
• Reuse of Extant Data Formats
• Don’t reinvent when existing structures can be re used; re use expertise
• Various approaches to encoding (translate to CDDL, take as is…)

Claims Characteristics PR, slide 2
General advice on claim design

• Proprietary Claims
• Considering the forgoing, proprietary claims are explicitly allowed

• Profiles
• Separate documents that may

• Make some claims mandatory
• Prohibit others
• Define new claims
• Narrow meaning of existing claims

	2020-02-05 RATS VI Agenda
	2020feb-virtual-interim-architecture
	Slide 1
	Slide 2
	Slide 3

	EAT Claims RATS Interim Feb 2020

