
One Data Model SDF: 
A brief tutorial and status

T2TRG summary meeting @ IETF 107+, April 14, 2020 
Carsten Bormann

1



The need for One Data Model

• IoT standardization is dominated by ecosystem-specific SDOs


• Each ecosystem has their own data models,  
and their own way to document them


• IoT applications may need to work with things from multiple ecosystems: 
No single ecosystem can supply the whole variety needed


• Can build protocol translators; harder to translate hundreds of data 
models

2



The One Data Model liaison group
• People from different SDOs meet in an informal liaison group


• Bring together hundreds of ecosystem-specific data models


• Express in common format


• Work on merging and harmonizing data models


• Make harmonized data models available for all SDOs (BSD license!)


• Working in the open: https://github.com/one-data-model


• Inevitably: standardize on a common format: SDF

3

https://github.com/one-data-model


SDF: The Simple Definition Format

• https://github.com/one-data-model/language


• Defines classes of things (odmObject, combine into odmThing)


• Things don’t have data, they have interactions with their clients(*),  
provided by affordances


• Interaction affordances grouped into interaction patterns: 
For now, Property, Action, Event


• Interactions input and output data (groupable into odmData)

4

(*) Not a  
oneDM term

https://github.com/one-data-model/language


Interaction Patterns

• SDF is about 
modeling data


• Interaction Patterns 
mostly defined along 
input and output data

5

Name cf. REST Initiative Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data (Data)

Action POST Client Input Output

Event ? Thing — Output



Action

• Actions can have 
different input and 
output data


• Some actions take 
time (not modeled): 
Initiative to return 
output moved to 
Thing (~ Event)

6

Name cf. REST Initiative Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data Data

Action POST Client Input Output

Event ? Thing — Output



Property
• Property is used for 

data items that can 
be read by the client


• Writable properties 
can also be “set” (no 
special output)


• Observable 
properties look like 
an Event

7

Name cf. REST Initiativ
e Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data (Data)

Property  
(observable)

GET
(observe)

Client, 
Thing — Data

Event ? Thing — Output



Event
• Least well-defined 

interaction pattern


• Is an Event just a 
notification (similar to 
observable property)?


• Are Events just status 
updates (temperature) 
or is any single one of 
them precious (coin 
insertion)?

8

Name cf. REST Initiative Input Output

Property GET Client — Data

Property 
(writable) PUT Client Data Data

Action POST Client Input Output

Event ? Thing — Output



Data

• Data is defined by their shape (as in data definition/“schema” languages)


• Data definitions can be made inline in an affordance definition or 
separately, for later reference


• Definitions can use subset of json-schema.org terms,  
and/or SDF-specific terms such as contentFormat, nullable, scale…

9

http://json-schema.org


odmThing, odmProduct

• odmObject definitions can 
be combined into top-level 
structures


• odmThing can contain 
odmObject and odmThing


• odmProduct similar, as a (not 
to be harmonized) top-level 
product definition

10

Insert magic here

[figure modified from Michael J Koster]



Overall Specification Structure

• One or more JSON documents; linked together with JSON pointers 
[RFC6901]


• SDF specification can reuse elements (such as odmData definitions) of 
other SDF specifications


• Goal: define a basic core set that every specification can reference  
(“common reusable definitions”)

11



Specifying SDF
• SDF specs are JSON documents, can be specified in a data definition language


• https://github.com/one-data-model/language/blob/master/sdf-schema.json 
using json-schema.org “JSON Schema” format


• Do not confuse with selected json-schema.org terms used in SDF


• Of course, also needs semantics


• Definition: https://github.com/one-data-model/language/blob/master/sdf.md


• Best practices: https://github.com/one-data-model/language/blob/master/
bestpractices.md


• De-facto specifics via tooling at https://github.com/one-data-model/playground

12

https://github.com/one-data-model/language/blob/master/sdf-schema.json
http://json-schema.org
http://json-schema.org
https://github.com/one-data-model/language/blob/master/sdf.md
https://github.com/one-data-model/language/blob/master/bestpractices.md
https://github.com/one-data-model/language/blob/master/bestpractices.md
https://github.com/one-data-model/language/blob/master/bestpractices.md
https://github.com/one-data-model/playground


Status 2020-04-14
• SDF spec is stable enough to submit data models


• Stabilized in Stockholm F2F meeting (2019-10-01..-04)


• Several hundred data models now collected at playground


• Ecosystem SDOs have developed tools to convert their corpus to SDF


• Specification itself needs more cleanup and an editorial round


• 4-day online conference tentatively scheduled for weeks 19–21


• Should be completed by end of May

13



What’s next

• Continue implementation work on the model-consuming side  
(e.g., WISHI hackathon on 2020-04-24)


• Solve remaining issues for SDF 1.0 (to be done in liaison group)


• Existing “playground” definitions serve as a corpus


• Can fix all of these in place if needed  
for a non-backwards compatible change!


• Next: Find a venue for standardization of SDF?

14


