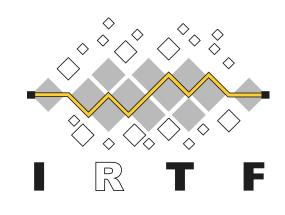
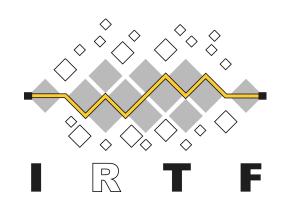
T2TRG: Thing-to-Thing Research Group


Summary meeting before IETF 108, online, 2020-07-16 Chairs: Carsten Bormann & Ari Keränen

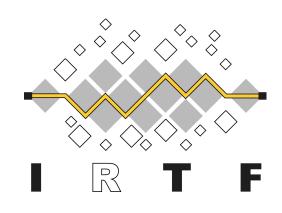
Note Well

- You may be recorded
- Be nice
- The IPR guidelines of the IETF apply: see http://irtf.org/ipr for details.

Note Well – Intellectual Property


- By participating in the IRTF, you agree to follow IRTF processes and policies:
 - If you are aware that any IRTF contribution is covered by patents or patent applications that are owned or controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion
 - The IRTF expects that you file such IPR disclosures in a timely manner in a period measured in days or weeks, not months
 - The IRTF prefers that the most liberal licensing terms possible are made available for IRTF Stream documents – see RFC 5743
 - Definitive information is in <u>RFC 5378</u> (Copyright) and <u>RFC 8179</u> (Patents, Participation), substituting IRTF for IETF, and at <u>https://irtf.org/policies/ipr</u>

The IRTF follows the IETF Intellectual Property Rights (IPR) disclosure rules


Note Well – Privacy & Code of Conduct

- As a participant in, or attendee to, any IRTF activity you acknowledge that written, audio, video, and photographic records of meetings may be made public
- Personal information that you provide to IRTF will be handled in accordance with the Privacy Policy at <u>https://www.ietf.org/privacy-policy/</u>
- As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam (<u>https://www.ietf.org/contact/ombudsteam/</u>) if you have questions or concerns about this
- See <u>RFC 7154</u> (Code of Conduct) and <u>RFC 7776</u> (Anti-Harassment Procedures), which also apply to IRTF

Goals of the IRTF

- term issues of engineering and standards making
- architecture, and technology
- See "An IRTF Primer for IETF Participants" <u>RFC 7418</u>

• The Internet Research Task Force (IRTF) focuses on longer term research issues related to the Internet while the parallel organisation, the IETF, focuses on shorter

The IRTF conducts research; it is not a standards development organisation

• While the IRTF can publish informational or experimental documents in the RFC series, its primary goal is to promote development of research collaboration and teamwork in exploring research issues related to Internet protocols, applications,

Administrivia (I)


- Blue sheet (sign your name in the <u>CodiMD notes</u>)
- Note-takers
- Off-site (Jabber)
 - xmpp:t2trg@jabber.ietf.org?join
- Mailing List: <u>t2trg@irtf.org</u> subscribe at: https://www.ietf.org/mailman/listinfo/t2trg
- Repo: https://github.com/t2trg/2020-07-summary

Time (UTC)	Who	
14:00	Chairs	Intro, RG
14:10	Chairs	Reports fr
14:20	Matthias Kovatsch	
14:35	Carsten Bormann	Intro: Indu
14:40	Michael Richardson	IoTSF upo
14:50	Michael Koster	ZigBee/Cl
14:55	Michael Koster	OneDM u
15:05	Travis Shanahan	OMA DMS
15:15	Wouter van der Beek	OCF upda
15:20	ChairsReporMatthias KovatschOPCMatthias KovatschOPCCarsten BormannIntro:Michael RichardsonIoTSFMichael KosterZigBeMichael KosterOneDTravis ShanahanOMAWouter van der BeekOCF aMichael McCoolW3C aCarsten BormannASDFXavier FoyIoT Ea	W3C upda
15:35	Carsten Bormann	ASDF BO
15:45	Xavier Foy	IoT Edge
15:55	Chairs	Wrap-up

Agenda

Subject

- status, upcoming meetings and activities
- from WISHI, WoT Helsinki
- NETCONF binding experiment notes
- ustry Updates (focus for this meeting)
- date
- CHIP update
- ipdate
- SE/IPSO update
- ate
- late for new charter period
-)F
- **Challenges and Functions**

T2TRG scope & goals

- Open research issues in turning a true "Internet of Things" into reality
 - Internet where low-resource nodes ("things", "constrained nodes") can communicate among themselves and with the wider Internet
- Focus on issues with opportunities for IETF standardization
 - Start at the IP adaptation layer
 - End at the application layer with architectures and APIs for communicating and making data and management functions, including security

IRTF and IETF

IRTF (Research)

IETF (Engineering)

CoRE: protocol engineering for RESTful environments

T2TRG: open research issues with IETF potential

LWIG: Informational guidance for implementers

Next meetings

- Regular <u>WISHI</u> calls
 - E.g., Azure DTDL discussion 2020-07-30
 - Probably pausing in August, picking up in September again
- IETF 109 (TBD, decision in August)
- Online meetings with OCF / OMA SpecWorks (LwM2M&IPSO)/W3C WoT? Topic-based meetings on selected OneDM- and ASDF related issues?
- Really co-locating with academic conferences again from 2021?

RG Doc Status

- "RESTful Design for IoT": TBD affordances & discovery, more terms, re-scoping?
- reviewers!
- Not today:
 - Secure Bootstrapping for IoT
 - YOUPI (describing binary data in legacy formats)
 - CoRE apps, collections part from CoRE interfaces
 - Layer 3 considerations?
- Ramping up: WISHI notes (see WISHI wiki, e.g. terminology rosetta stone)

• "IoT Edge Challenges and Functions": short update today, in RG adoption call. Need more

Work on IoT Semantic/Hypermedia Interoperability (WISHI)

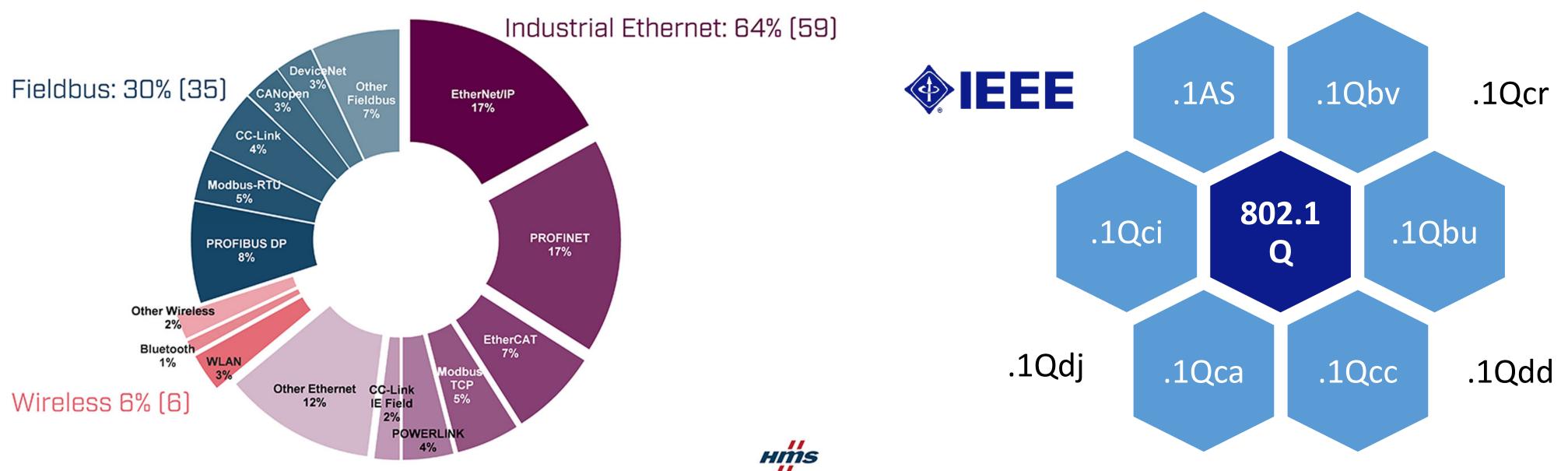
- Four online meetings with variety of topics
 - Semantics technology landscape
 - OpenAPI/AsyncAPI and CoRE/WoT technologies
 - SDF standardization & ASDF BOF
 - W3C WoT TD templates & OneDM SDF
 - WoT Discovery \bullet

Identifiers, References, Paths, and Pointers (& JSON Path standardization)

WoT "Helsinki" meeting

- Half-day online meeting with the W3C Web of Things (WoT)
 - originally planned f2f in Helsinki
- hypermedia controls in TDs

• Topics: use cases, lifecycle, discovery, PoCs, OneDM/TD integration,


Preview of Our <u>IoT 2020</u> Conference Paper: Bringing Deterministic Industrial Networking to the W3C Web of Things with TSN and OPC UA

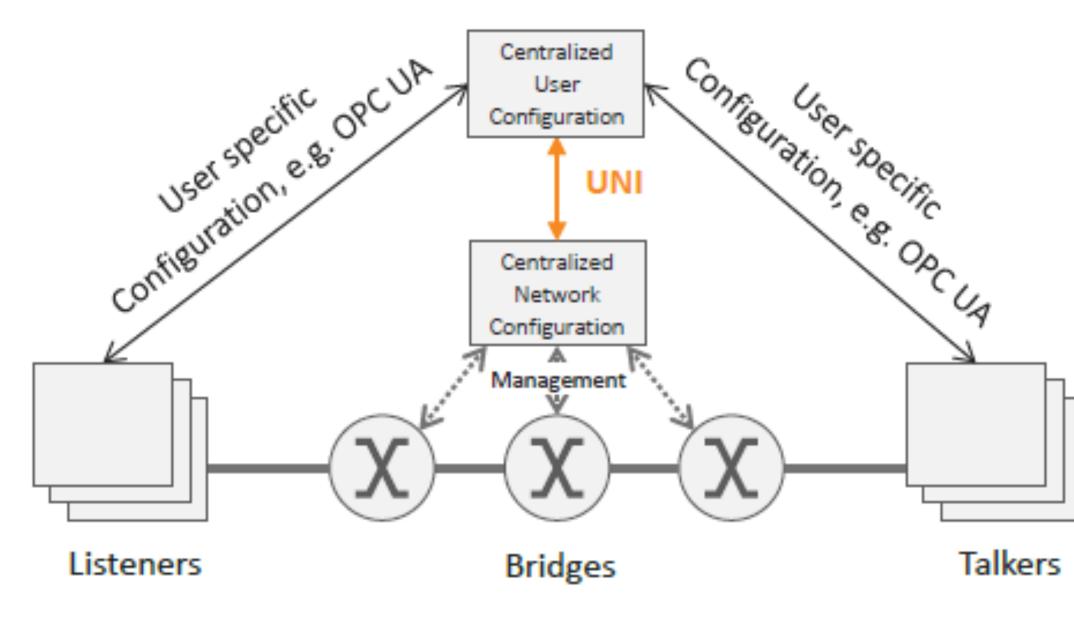
Luca Sciullo, Sushmit Bhattacharjee, and Matthias Kovatsch

T2TRG Meeting, virtual, 16 Jul 2020

Deterministic Industrial Networking



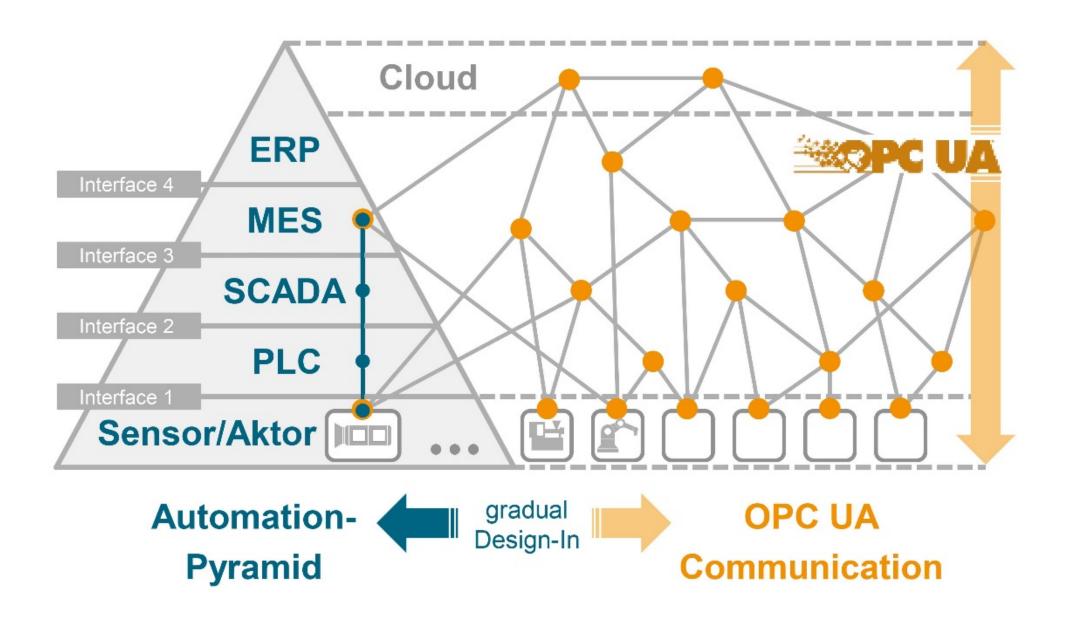
• Industrial IoT often requires determenistic networking


 \rightarrow

- Provides QoS guarantees
- Plethora of field buses

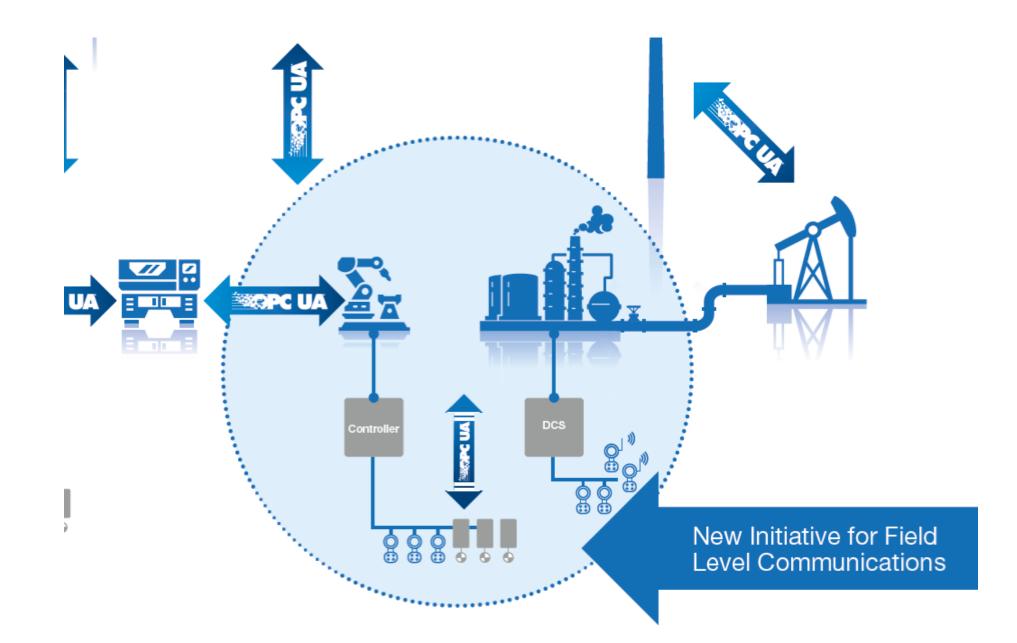
- Time-Sensitive Networking (TSN) IEEE specification family
 - Based on standard Ethernet (managed VLANs) \bullet
 - Enables a converged network
- Requires network configuration \leftarrow

TSN Network Configuration (Centralized Model)



Fully Centralized Model

- Network configuration usually done via YANG modules (cf. CoRECONF for LP-WAN work)
- Multiple protocol choices
 - NETCONF
 - **RESTCONF**
 - CoRECONF
- However, network equipment mainly has **NETCONF** interfaces



Cross-Vendor Industrial Applications

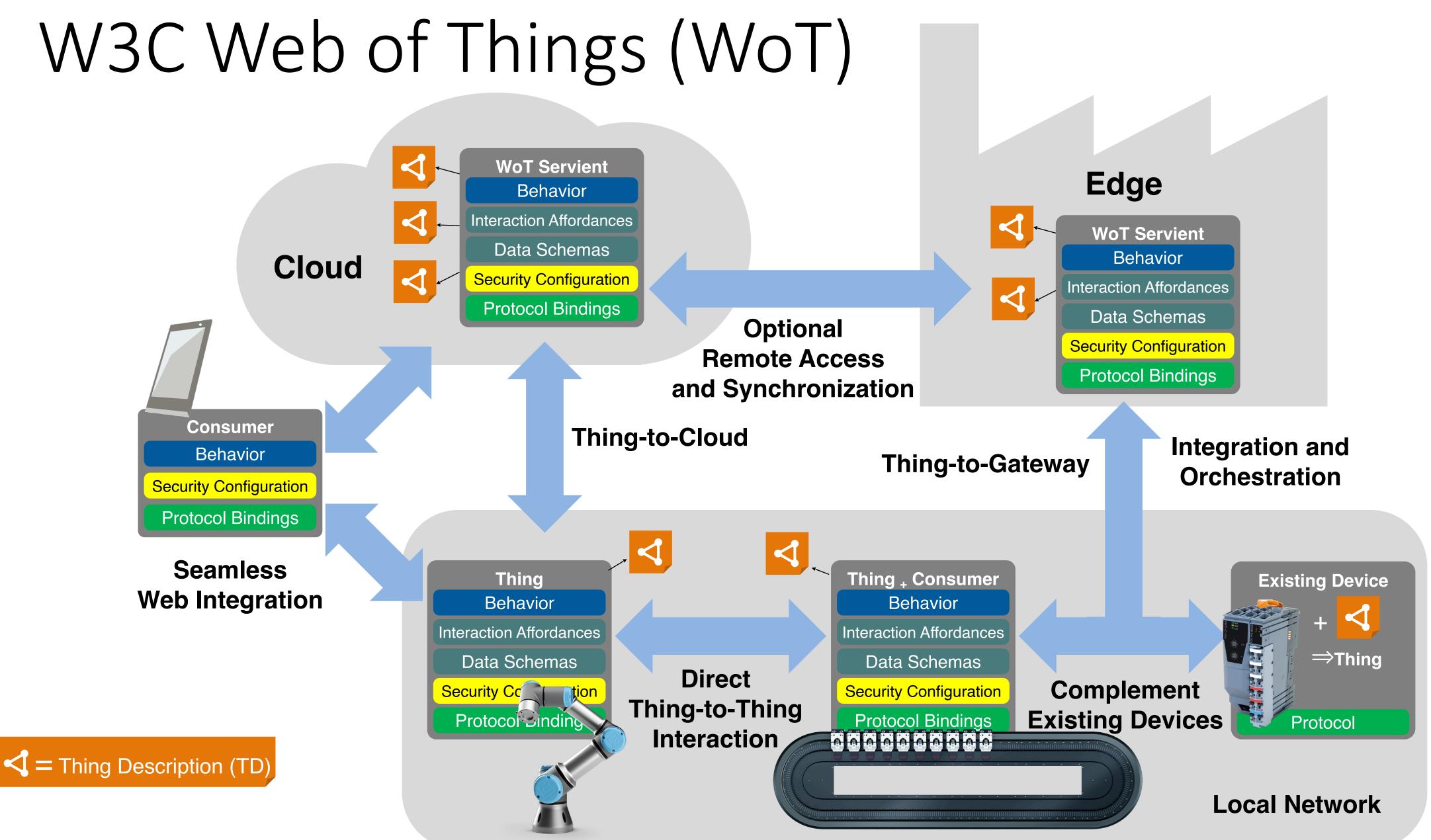
OPC Unified Automation (UA)

- Graph-based information model
- **Communication protocols** (UA-Binary as Client-Server or PubSub)
- For management/monitoring \rightarrow

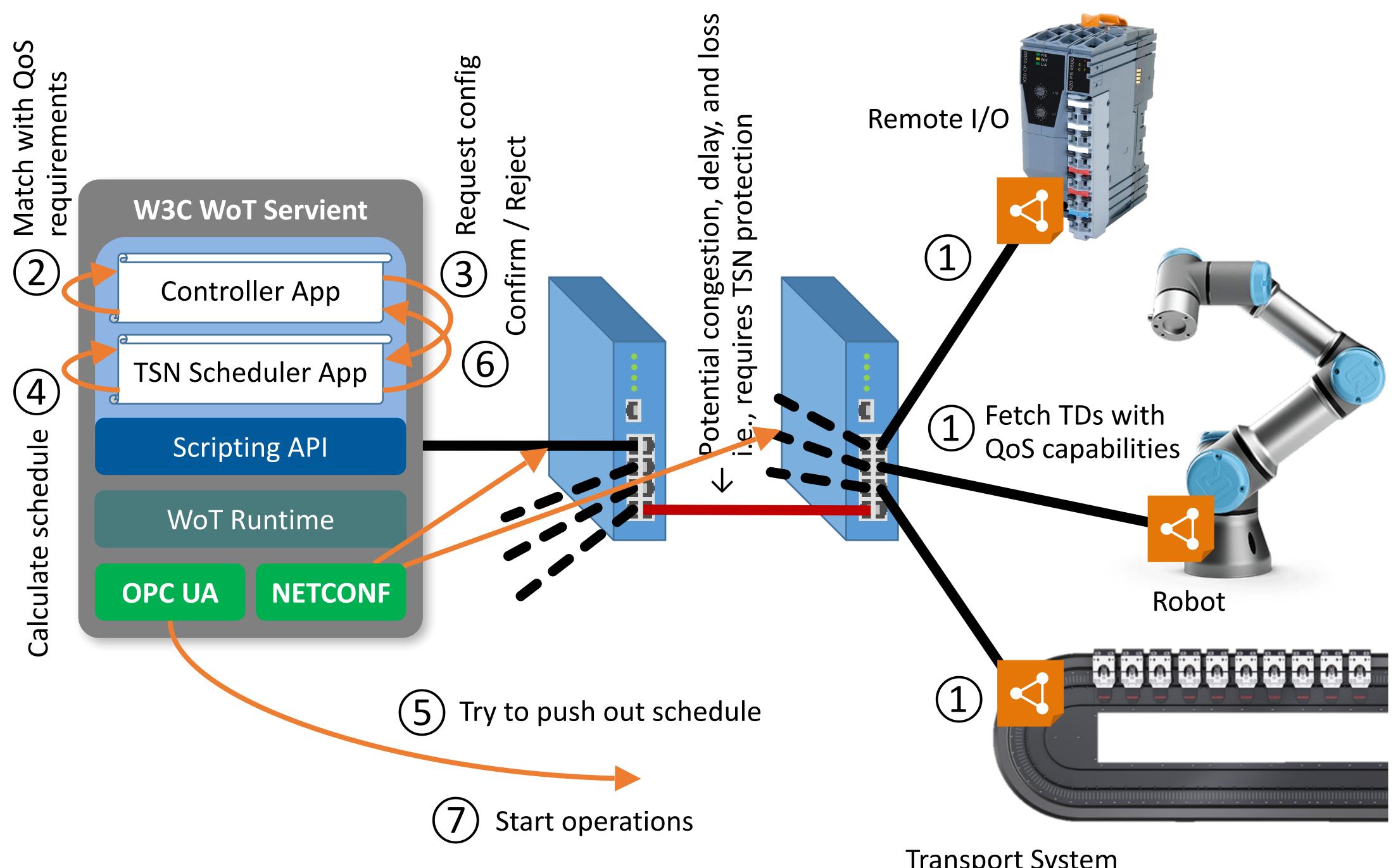
OPC UA Field-Level Communications (FLC)

- Extension to cover field controllers and devices lacksquare
- Integrates TSN (IEC/IEEE 60802 Profile)
- For real-time applications \rightarrow

OPC UA Information Model


Attribute	Value	
✓ Nodeld	ns=2;s=HelloWorld/MyObject.Foo	Ro
NamespaceIndex	2	
IdentifierType	String	
Identifier	HelloWorld/MyObject.Foo	• 6
NodeClass	Variable	
BrowseName	2, "Foo"	• •
DisplayName	"en", "Foo"	•
Description	···· ··· · · · · · · · · · · · · · · ·	•
WriteMask	0	
UserWriteMask	0	•
RolePermissions	BadAttributeldInvalid (0x80350000)	
UserRolePermissions	BadAttributeldInvalid (0x80350000)	
AccessRestrictions	BadAttributeldInvalid (0x80350000)	
✓ Value		
SourceTimestamp	11/12/2018 10:43:20.031 AM	
SourcePicoseconds	0	
ServerTimestamp	11/12/2018 10:44:54.931 AM	
ServerPicoseconds	0	
StatusCode	Good (0x0000000)	
Value	0	
 DataType 	Int16	
NamespaceIndex	0	
IdentifierType	Numeric	
Identifier	4 [Int16]	• [

oughly similar to the Web


Graph-based and browsable Nodes similar to resources

- Namespace (URI mapped to integer)
- Identifier (Integer, string, binary, GUID)
- Node classes
 - Object
 - Variable
 - Method
 - Reference
 - Various type classes

Bidirectional references, bitmaps, word sizes, ...

Goal Extend W3C WoT ecosystem to deterministic industrial networking

Transport System

W3C WoT Vocabulary for QoS

Initial proposal based on proof of concept – more discussion needed

QoS Vocabulary: Requirement Terms

Term (qos:)	Description	Туре
flowName	Unique name for data flow (unique within QoS domain, e.g., TSN domain)	string
talker	Source of the data flow (e.g., interface MAC address)	string
listener	Destination of the data flow (e.g., interface MAC address)	string
trafficClass	Traffic class for the data flow (Literal, one of deadline, latency, bandwidth)	string
cycleTime	Interval between messages (or message bursts) or for bandwidth definition in nanoseconds	integer
maxBytes	Maximum message size or for bandwidth definition in bytes (same as QoS capability)	integer
msgCount	Number of messages within one cycle	integer
deadline	Relative time within cycle by when the message must be received in nanoseconds	integer
offset	Relative time within cycle after which the message is sent	integer
lossLimit	Number of acceptable message losses in a row	integer

QoS Vocabulary: Capability Terms

Term (qos:)	Description	Class	Туре
capabilities	Container for the QoS capabilities	Thing	string
minCycle	Fastest supported cycle time in nanoseconds	Capabilities	string
maxCycle	Slowest supported cycle time in nanoseconds	Capabilities	string
workingClock	Whether the Thing is synchronized to a working clock (e.g., 802.1AS)	Capabilities	string
maxBytes	Maximum message size in bytes above Layer 2 (i.e., including IP headers if any)	Form	integer

QoS Vocabulary: Usage

Controller App

App Requirements (internal data)

- •trafficClass
- •cycleTime
- deadline
- •offset
- •lossLimit
- •flowName
 - Generated

TSN Scheduler App

Schedule Action (input DataSchema)

- •flowName
- •talker
- •listener
- •trafficClass
- •cycleTime
- •maxBytes
- •(msgCount)
- (deadline)
- (offset)
- (lossLimit)

@type: qos:Flow

QoS Capability (in qos:capabilities)

- •minCycle
- •maxCycle
- •workingClock

QoS Parameter (per affordance form)

- maxBytes
- •listener
 - Action \bullet
- •talker
- Event/Obs.Property •

W3C WoT Protocol Bindings

For NETCONF and OPC UA

OPC UA Binding – for now Client/Server only

- - Variable nodes \rightarrow Properties
 - Method nodes \rightarrow Actions
 - Nodes alerts \rightarrow Events
- DataSchema
 - OPC UA uses binary data types, hence JSON Schema must be further annotated
 - \rightarrow opc:dataType annotation in DataSchema
- Form href URI
 - Adopt opc.tcp schema, but extend with ;-separated query similar to OPC UA tooling → opc.tcp://localhost:5050/server-path?ns=1;s=mynode
- Form contentType

 - → application/x.opcua

node-opcua limitation

Mapping to Properties, Actions, and Events (with opc:methodName field in from)

• Would be binding-specific, ergo form field, but form metadata not available to ContentSerdes

• UA-Binary has no registered mediatype (similar to URI schema, needs a push within OPCF)

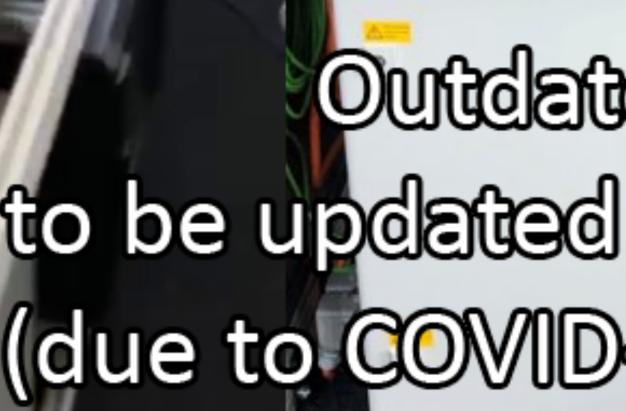
NETCONF Binding

- Mapping to Properties, Actions, and Events (built on RESTCONF)
 - Leaf-nodes \rightarrow Properties
 - RPCs \rightarrow Actions
 - Notifications \rightarrow Events
- DataSchema
 - Mostly works, as YANG is XML-based
 - Must add mechanism for XML node attributes (e.g.,)
- Form href URI (SSH transport)
- Form contentType (from RESTCONF)
 - application/yang-data+xml

 \rightarrow nc:container and nc:attribute annotations – should become general XML mechanism

• Similar to RESTCONF URIs, but with support for datastores (RESTCONF has implicit rules) > netconf://localhost:830/running/ietf-interfaces:interfaces/interface=eth0/type

Examples


OPC UA

```
"properties": {
 "Velocity": {
    "type": "number",
    "observable": true,
    "opc:dataType": "Double",
    "forms": [{
      "href": "opc.tcp://xts.local:5050/ns=1;\\
          s=GVL.OPC Interface.MOVER[1].Input.Velocity",
      "contentType": "application/x.opcua-binary" }] },
 ...},
"actions": {
  "Execute": {
    "input": {
      "type": "boolean", "opc:dataType": "Boolean" },
    "output": {
      "type": "boolean", "opc:dataType": "Boolean" },
    "forms": [{
      "href": "opc.tcp://xts.local:5050/ns=1;\\
          s=GVL.OPC_Interface.XTS.Input.Execute",
     "contentType": "application/x.opcua-binary",
      "opc:method": "Call" }] } }
```

NETCONF

```
"properties": {
 "admin-control-list": {
   "type": "array",
    "items": {
     "type": "object",
     "properties": {
       "index": {
         "type": "number",
         "minimum": 0, "maximum": 127 },
        "time-interval": {
          "type": "number",
         "minimum": 0, "maximum": 4294967295 },
        "gate-state": {
         "type": "number",
         "minimum": 0, "maximum": 255 } } },
    "uriVariables": {
      "datastore": {
       "@type": "nc:Target",
       "type": "string",
       "enum": ["candidate", "running", "startup"] },
      "interface": {
       "type": "integer",
       "minimum": 0, "maximum": 7 } },
    "forms": [{
     "href": "netconf://172.17.0.2:830/{datastore}/huawei:tsn-configuration\\
         /interface={interface}/gate-parameters/admin-control-list",
     "contentType": "application/yang-data+xml",
     "nc:curies": { "huawei": "urn:ietf:params:xml:ns:yang:huawei-tsn" } }] },
  • • •
```

Proof of Concept

Outdated photos, to be updated for camera-ready (due to COVID-19 lab lockdown)

BECKHOFF

Open-source Implementation

- Merged into Eclipse Thingweb node-wot <u>https://github.com/eclipse/thingweb.node-wot</u>

 - See examples here
 - https://github.com/eclipse/thingweb.node-wot/tree/master/examples/servients/netconf-cli
 - https://github.com/eclipse/thingweb.node-wot/tree/master/examples/servients/opcua-cli Updates from paper publication version pending
- TSN Scheduler App not included implementation proprietary • Open-source scheduler for potential future work: https://github.com/ACassimiro/TSNsched

Contact

Luca Sciullo PhD Student University of Bologna (Visiting Researcher at Huawei)

Sushmit Bhattacharjee PhD Student Huawei

Dr. Matthias Kovatsch Principal Researcher Huawei, Munich Research Center

matthias.kovatsch@huawei.com

(Note that this is a research view)

Industry Updates

Carsten Bormann

This is a Research Group! Why Industry Updates?

- To stay relevant, we need to understand what is going on in industry and other (non-IETF) Standards Development Organizations (SDOs).
- Those developments are often hard to understand for an engineer, when all one has is the marketing speak from the press release.
- Hidden behind that may be interesting technical innovations, which pose research questions that are worthy of being investigated.
- So we'll have short segments (usually 5–10 min) that highlight those technical nuggets, but also organizational news that we can use.

IotSF

Industry Updates Zigbee/CHIP One Data Model **T2TRG Summary Meeting** July 16, 2020

Project Connected Home over IP

- Google, Apple, Samsung, Amazon, Comcast, many others in Zigbee Alliance
- New specification for Smart Home interoperability on IP networks: WiFi, Thread, IP-over-BLE
- Open source stack (Apache 2.0) based on contributions of working code
- Open source data models based on ZCL (BSD)
- Simple demo operational 2Q 2020
- Target for device certification 2021

One Data Model (OneDM)

- Liaison organization of SDOs, vendors, and experts
- Initiated by Zigbee in the fall of 2018
- Zigbee, OCF, OMA, Bluetooth mesh, and associated vendors, energy and microgrid verticals
- Phase 1 Federated data model language (DSL) and meta-model, based on features that can express all other IoT data models
- Common classes of affordances with semantic type definitions

OneDM (2)

- Playground repository with contributions and examples of definitions from OMA, OCF, Zigbee, and Bluetooth mesh
- All definitions are contributed under the BSD 3-Clause license
- Phase 2 Data Model consolidation from diverse SDOs and using diverse transfer layer protocols
- Opening of the liaison group to broad participation based on open source – language and models
- Public-facing website and content

(4)

LwM2M Status Update

in the so i the property

OMOSpecWorks For a Connected World

10

LwM2M v1.2 will be released this summer

- New transports for LwM2M;
 - this allows LwM2M messaging to be conveyed over MQTT and over HTTP.

Optimizations for

- bootstrapping interface; this reduces the amount of data and the number of messages transmitted during the bootstrapping exchange.
- registration interface; this reduces the amount of data transmitted during registration exchanges.
- operation.
- Support for LwM2M gateway functionality;
 - this allows non-LwM2M loT devices as well as LwM2M devices behind a gateway to be connected to the LwM2M ecosystem and to manage those devices remotely.
- New, highly optimized encoding format based on CBOR called LwM2M CBOR.

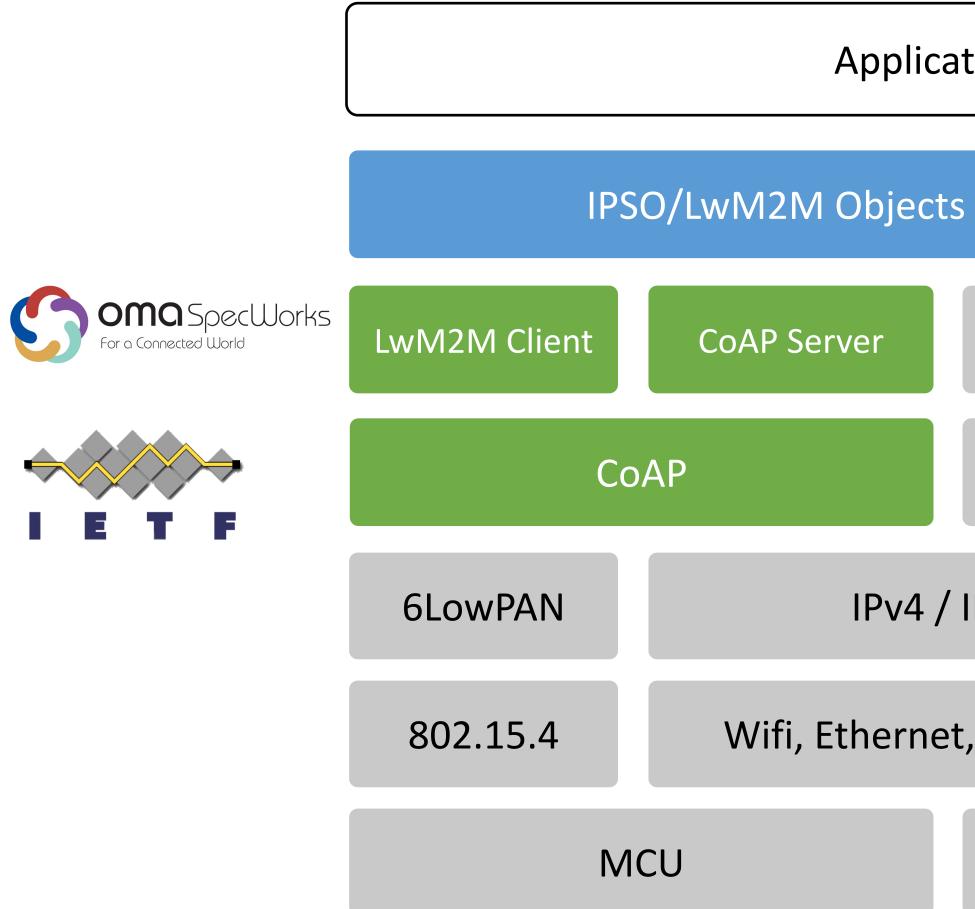
• information reporting interface; observation attributes may now be included in an Observe

V1.2 features, cont.

- maximum historical queue).
 - Edge allows notifications to be triggered on rising and falling edges.

 - Confirmable notifications allow the control of reliable transmissions of notifications. • Maximum historical queue allows the control of time-series data usage.
- Updates to use the latest communication security protocols based on TLS and DTLS 1.3 (as well as the use of the Connection ID).
 - Flexibility to control the use of TLS and DTLS 1.3 through configuration information.
- Untangling the relationship of security credentials and their server configuration.
- Clarifications of object versioning rules.
- Enhanced functionality for firmware updates.

Definition of new notification attributes (edge, confirmable notification, and


Leshan v1.0.2 is out ! //> #831

- Leshan is a popular, open source implementation of LwM2M.
- the LwM2M community.

Open source software development has always been a high priority for

The IP for Smart Objects (IPSO) device stack (recap)

tions			
s (W3C, OCF, ZDO)			
Web Server	Other IP Stacks:		
HTTP	MQTT, XMPP, etc.		
IPv6	Non-IP based		
, Cellular,	Transport - BTLE		
MPU			

Application

Data Models

API / Services

Application Protocol

Routing

HW Network

Hardware

IPSO Object Structure

• Same URIs as LwM2M : /{Object ID}/{Object Instance}/{Resource ID}

/3300/0/5700

- 3300 Temperature Sensor
- Instance 0 of a Temperature Sensor 0 ____
- 5700 Resource having the current value
- Data Types (String, Integer, ...) as LwM2M
- Operations (Read, Write, Create...) as LwM2M \bullet
- Object Linking and Core Link
 - Object Linking is used to refer to Objects within the device.
 - Allows composition without nasty large nested structures
 - Allows for complex objects (i.e. appliance made of several sensors)
- Web Linking to refer to external items (over CoAP). • Query parameters: GET <URL>?rt="urn:oma:lwm2m:temp"
- Extensible data model
 - Only few "Mandatory" Resources to enable interoperability
 - Use of versioning for model updates

_WM2M Client			
C	Object 0		
	Resource 1		
	Resource 2		
	Resource 3		
	Resource 4		
C	Dbject 1	Ъ	
	Resource 1		
	Resource 2		
	Resource 3		
	Resource 4		

LWM2M	Client	t			
	Obje	ect 0			\bigcirc
		Resource 1	F	R, W, E	ACL
		Resource 2	F	R	

IPSO Smart Objects

<u>Object</u>	<u>Object ID</u>	<u>Object</u>
Digital Input	<u>3200</u>	Current
Digital Output	<u>3201</u>	Frequency
Analogue Input	<u>3202</u>	Depth
Analogue Output	<u>3203</u>	Percentage
Generic Sensor	<u>3300</u>	Altitude
Illuminance Sensor	<u>3301</u>	Load
Presence sensor	<u>3302</u>	Pressure
Temperature Sensor	<u>3303</u>	Loudness
Humidity Sensor	<u>3304</u>	Concentration
Power Measurement	<u>3305</u>	Acidity
Actuation	<u>3306</u>	Conductivity
Set Point	<u>3308</u>	Power
Load Control	<u>3310</u>	Power Factor
Light Control	<u>3311</u>	Distance
Power Control	<u>3312</u>	Energy
Accelerometer	<u>3313</u>	Direction
Magnetometer	<u>3314</u>	Time
Barometer	<u>3315</u>	
Voltage	<u>3316</u>	

<u>Object ID</u>	<u>Object</u>	<u>Object ID</u>
<u>3317</u>	Gyrometer	<u>3334</u>
<u>3318</u>	Color	<u>3335</u>
<u>3319</u>	GPS Location	<u>3336</u>
<u>3320</u>	Positioner	<u>3337</u>
<u>3321</u>	Buzzer	<u>3338</u>
<u>3322</u>	Audio Clip	<u>3339</u>
<u>3323</u>	Timer	<u>3340</u>
<u>3324</u>	Addressable Text Display	<u>3341</u>
<u>3325</u>	On/Off Switch	<u>3342</u>
<u>3326</u>	Dimmer	<u>3343</u>
<u>3327</u>	Up/Down Control	<u>3344</u>
<u>3328</u>	Multiple Axis Joystick	<u>3345</u>
<u>3329</u>	Rate	<u>3346</u>
<u>3330</u>	Push Button	<u>3347</u>
<u>3331</u>	Multi-state Selector	<u>3348</u>
<u>3332</u>	Bitmap	<u>3349</u>
<u>3333</u>	Stopwatch	<u>3350</u>

IPSO Reusable Resources

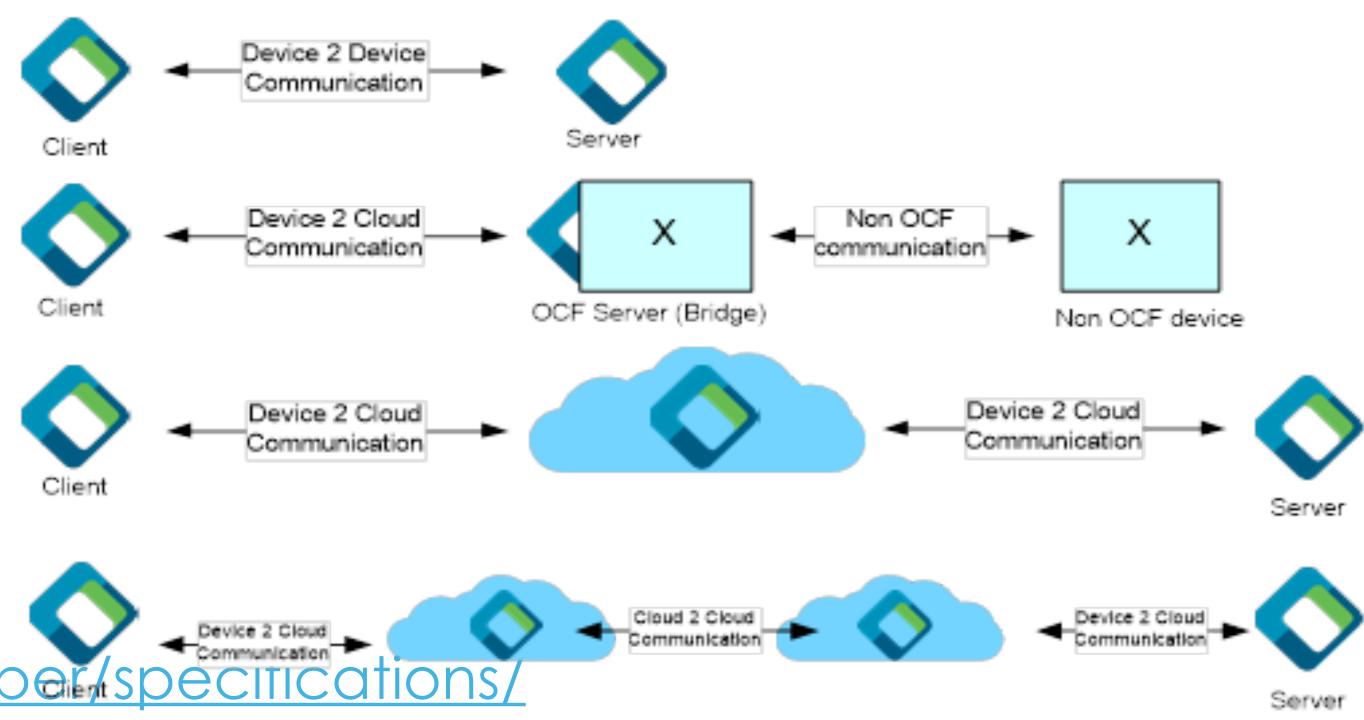
<u>Resource</u>	<u>Resource ID</u>	<u>Resource</u>	<u>Resource ID</u>
Digital Input State	5500	X Coordinate	5528
Digital Input Counter	5501	Y Coordinate	5529
Digital Input Polarity	5502	Clear Display	5530
Digital Input Debounce	5503	Contrast	5531
Digital Input Edge	5504	Increase Input State	5532
Selection Digital Input Counter	5505	Decrease Input State	5533
Reset Current Time	5506	Counter	5534
Fractional Time	5500	Current Position	5536
Min X Value	5508	Transition Time	5537
		Remaining Time	5538
Max X Value	5509	Up Counter	5541
Min Y Value	5510	Down Counter	5542
Max Y Value	5511	Digital State	5543
Min Z Value	5512	Cumulative Time	5544
Max Z Value	5513	Max X Coordinate	5545
Latitude	5514	Max Y Coordinate	5546
Longitude	5515	Multi-state Input	5547
Uncertainty	5516	Level	5548
Velocity	5517	Digital Output State	5550
Timestamp	5518	Digital Output	
Min Limit	5519	Polarity	5551
Max Limit	5520	Analog Input State	5600
Delay Duration	5521	Min Measured Value	5601

<u>Resource</u>	<u>Resource ID</u>	<u>Resource</u>	<u>Resource ID</u>
Reset Min and Max Measured Values	5605	Reactive Power Calibration	5816
Analog Output Current Value	5650	Power Factor	5820
Sensor Value	5700	Current Calibration	5821
Sensor Units	5701	Reset Cumulative energy	5822
X Value	5702	Event Identifier	5823
Y Value	5703	Start Time	5824
Z Value	5704	Duration In Min	5825
Compass Direction	5705	Criticality Level	5826
Colour	5706		
Application Type	5750	Avg Load Adj Pct	5827
Sensor Type	5751	Duty Cycle	5828
Instantaneous active	5800	On/Off	5850
power Min Measured active	Dimmer	Dimmer	5851
power	5801	On Time	5852
Max Measured active power	5802	Muti-state Output	5853
Cumulative active power	5805	Off Time	5854
Active Power Calibration	5806	Set Point Value	5900
Instantaneous reactive power	5810	Busy to Clear delay	5903
Min Measured reactive	5811	Clear to Busy delay	5904
power Max Measured reactive	5812	Bitmap Input	5910
power		Bitmap Input Reset	5911
Min Range reactive power	5813	Element Description	5912
		UUID	5913

Implementations and OMNA Registry

- Several Implementations support IPSO:
 - <u>Example XML</u> of the supported LwM2M and IPSO Objects in <u>Leshan</u>.
 - Sample <u>C package</u> for use of IPSO Objects in <u>Contiki</u>.
 - JS code templates of IPSO-defined devices <u>code templates</u>.
 - Sample <u>Smart Objects</u> Class can be used to create IPSO Smart Objects in your JavaScript applications.
 - BIPSO defines a set of BLE Characteristics that follows the IPSO Objects.
 - Contiki, Mbed, Zephyr and RIOT are example OS's that support IPSO Objects.
- Full object set available at the OMNA Registry: <u>http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html</u>

report out



Specification release

- New version of Specifications (V2.2.0) has been released on 7 July
- This version includes
- OCF Cloud API for Cloud Services
- Enabling integration of clouds
- Full scope of communications :
- Specifications are recognized ISO/IEC specifications
- More info:

https://openconnectivity.org/devel

OPEN CONNECTIVITY FOUNDATION MEMBER PUBLIC INFORMATION

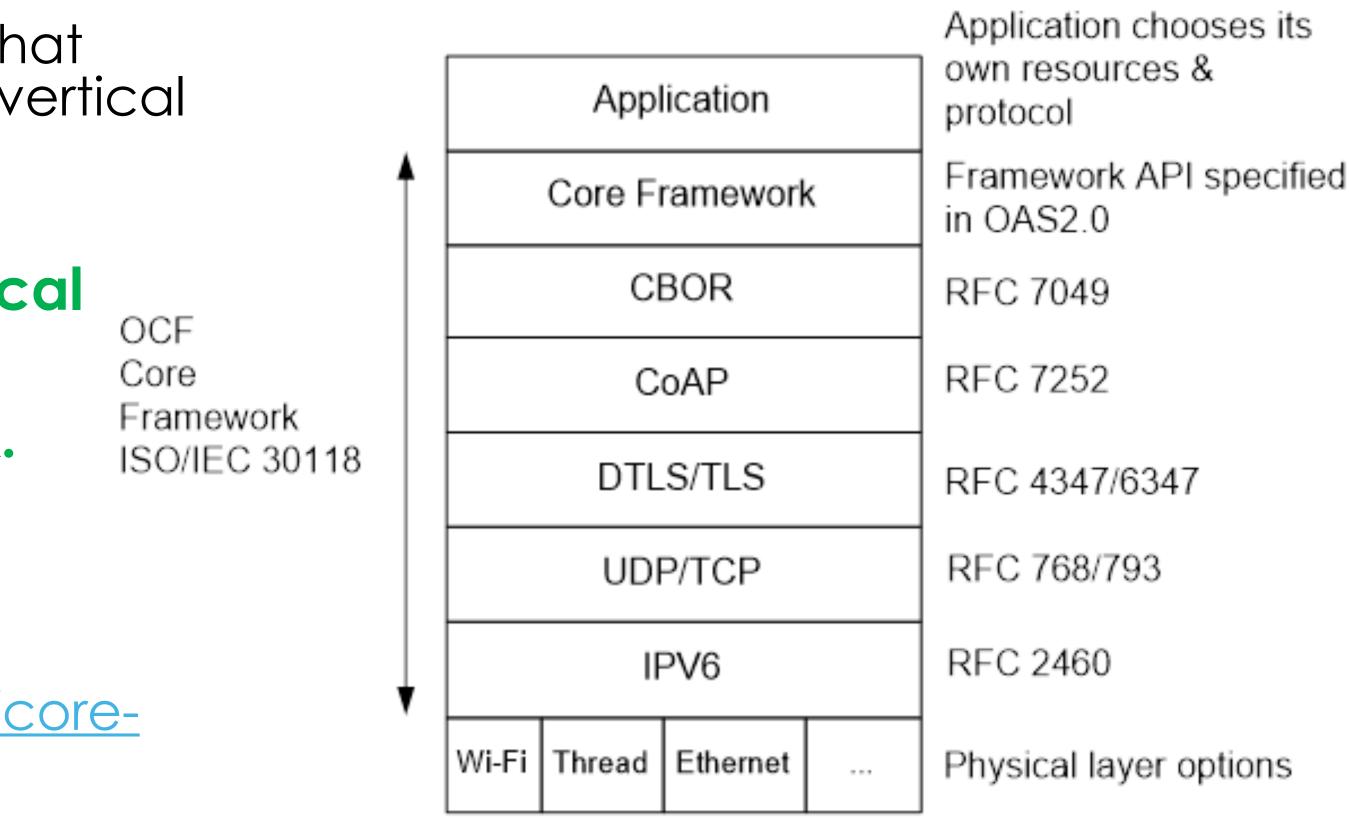
Open source implementation of OCF

- Open source available for all specifications
- Code running on the device: lotivity
 - <u>https://iotivity.org/</u>
 - <u>https://github.com/iotivity/iotivity-lite</u>
- Code running in the cloud: gOCF
- <u>https://gocf.dev/</u>
- https://github.com/go-ocf/cloud

OPEN CONNECTIVITY FOUNDATION MEMBER PUBLIC INFORMATION

51

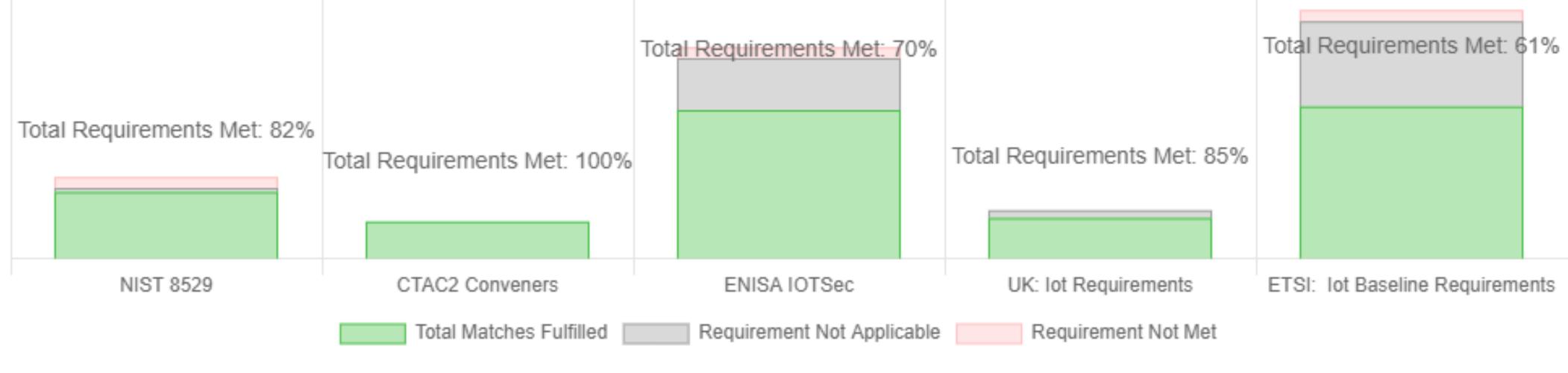
OCF Core Framework


- OCF Core Framework: The infrastructure that enables secure IP communication of the vertical defined application.
- What does it solve:

The OCF Core Framework enables vertical agnostic secure IP communication by means of a standardized framework.

More info:

https://openconnectivity.org/technology/coreframework/



OPEN CONNECTIVITY FOUNDATION MEMBER PUBLIC INFORMATION

OCF Security

 The OCF specification's security-first approach brings it into close alignment with several of the security guidelines from government and industry.

More info: <u>https://openconnectivity.org/technology/ocf-security/</u>

OPEN CONNECTIVITY FOUNDATION MEMBER PUBLIC INFORMATION

July 2020

Security Requirements Overview Per Baseline

External Cooperation with other standards

- IP-BLiS
 - Cooperation towards alignment on IP for Building Automation
 - <u>https://www.ipblis.org/</u>
- OneDM
- Cooperation on data model alignment
- <u>https://onedm.org/</u>

OPEN CONNECTIVITY FOUNDATION MEMBER PUBLIC INFORMATION

OPEN CONNECTIVITY FOUNDATION®

W3C

ASDF BoF outlook Carsten Bormann, T2TRG pre-IETF 108 summary meeting

2020-07-16

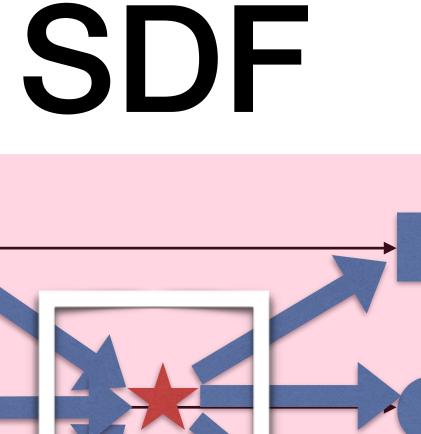
OneDM coming-out 2020-07-13

- OneDM "One Data Model" (<u>https://onedm.org</u>) was started as a liaison process 2018, after ZigBee "hive" meeting
- Liaison: Not xkcd 927, but a forum for SDOs (and large vendors) to HOW STANDARDS PROLIFERATE: cooperate about harmonization (SEE: A/C CHARGERS, CHARACTER ENCODINGS, IN STANT MESSAGING, ETC.)
 - SDOs often operate under NDAs
- OneDM ran under NDAs for a year
- 2020-07-13: OneDM decided to have its coming out... onedm.org

500N: 1?! RIDICULOUS! SITUATION IAT COVERS EVERYONE'S THERE ARE USE CASES. YEAH! 14 COMPETING STANDARDS

What has OneDM achieved so far?

- Agreement on a legal model:
 - Like the IETF did for a long time, OneDM doesn't exist as an organization (OCF did help occasionally where that was inconvenient)
 - contributions and output are BSD-3-clause open-source licensed: Liberal copyright license; everyone keeps their trademarks and patents
- Agreement on a basic common specification format: SDF 1.0
 - This is what the BOF is about
- Collected a couple hundred contributed data models in SDF from 4 SDOs (Bluetooth, OCF, OMA, ZigBee; other SDOs in the pipeline)


SDF RFC-to-be (the red star)

OneDM

Harmonized Data Models

60

Ecosystem 1 Ecosystem 2

Standardized by

ETF


ASDF BoF 2020-07-28

- ASDF: A Semantic Definition Format
- Non-WG forming BOF
- Inform IETF about what has happened

• Check everything is in place for forming an ASDF WG afterwards

IoT Edge Computing Challenges and Functions

https://tools.ietf.org/html/draft-hong-t2trg-iot-edge-computing-05 J. Hong, Y-G. Hong, X. de Foy, M. Kovatsch, E. Schooler and D. Kutscher Virtual T2TRG Meeting, July 2020

History of the Draft

- draft-hong-iot-edge-computing-01 (IETF 103)
 - Draft was presented along with two demo videos of use cases for IoT Edge computing (smart construction and real-time control system)
- draft-hong-iot-edge-computing-02 (IETF 104)
- draft-hong-t2trg-iot-edge-computing-00 (IETF 105)
 - Draft was integrated with Survey and gap analysis, a presentation made in T2TRG at IETF 100
- draft-hong-t2trg-iot-edge-computing-01 (IETF 106)
 - Focus changed from use case examples to Edge function analysis.
 - Draft changed from showing one Edge architecture to a range of models. Did not promote/preclude a particular model.
- draft-hong-t2trg-iot-edge-computing-02/3 (IETF 107)
 - Reorganized the draft
 - Extended the background section and the list of functions
- draft-hong-t2trg-iot-edge-computing-04/05 (IETF 108)
 - Addressed comments impacting content and structure
 - Completed section 4 with additional text on distributed model and research challenges
 - Call for adoption on -05

In a discussion on Edge and IoT in the T2TRG meeting, this draft was considered a possible starting point for a group document. New co-authors joined.

Update 1/2

Updates addressing comments (Thomas, Ari)

- Improvements to section 3 *IoT challenges leading towards EC*
 - Resilience to intermittent services now also includes enabling a cloud service to access a device currently asleep
 - Hiding traffic patterns from devices is another privacy application of IoT edge computing
- Improvements to the document structure
 - Removed the appendix (it was moved to draft-defoy-t2trg-iot-edge-computing-background for reference)
 - appendix)
 - Made editorial fixes in revision -05 based on Ari's comments

• Moved the overview of IoT edge computing section later in the draft, to improve flow (and cleaned up its references to the

Update 2/2

Updates that were planned since IETF 107

- Completed sections 4 (IoT Edge Functions) and 5 (Security Considerations)
 - Added an example of distributed IoT Edge Computing next to the general model
 - Added research challenges associated with IoT edge functions
 - Filled security section 5 with positive and negative impacts of edge computing
- Many editorial changes were also made to improve clarity and flow

Quick Overview

1. Introduction

2. Background

IoT, cloud computing, edge computing, use cases

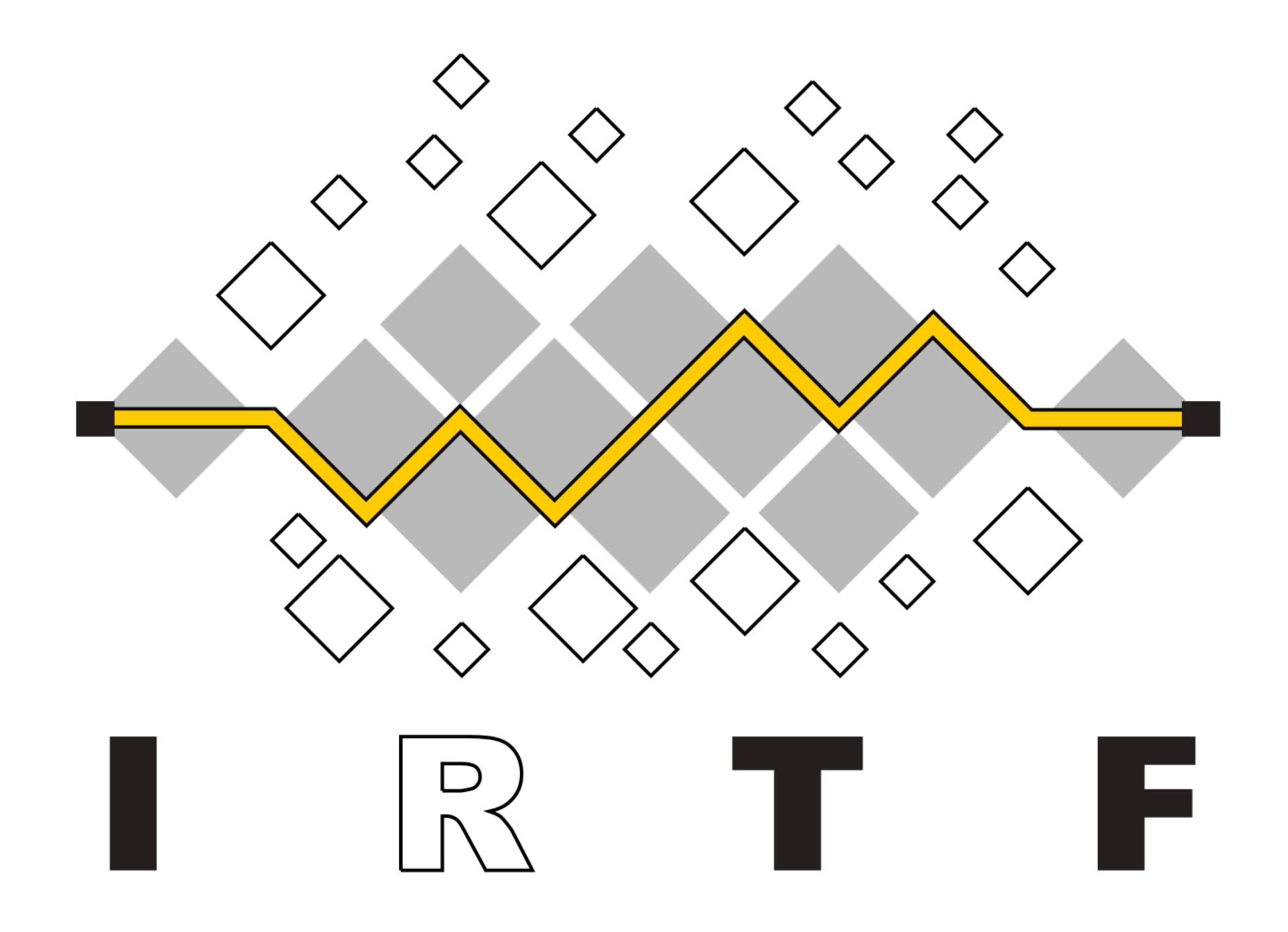
3. IoT Challenges Leading Towards Edge Computing

Time sensitivity, uplink cost, resilience to intermittent connectivity, privacy and security

4. IoT Edge Computing Functions

- Overview of existing use of IoT edge computing, general model
- Functions/components
 - OAM components: virtualization management, resource discovery and authentication, edge organization and federation
 - Functional components: external APIs, communication brokering, in-network computation, edge caching, other services
 - Application components: IoT end devices management, data management
- Simulation and emulation environments

5. Security Considerations



Conclusion

- We believe the draft is complete from the co-authors' standpoint:
 - It introduces IoT edge computing and describes reasons why it is needed for IoT
 - It describes a simple architecture model, major functions, and associated research challenges
 - It provides context for future work in this area in IRTF
- A good review helped fixing some issues with the flow and reduce the size of the draft significantly.
- The draft is now proposed for adoption by the RG. If you are interested, please review and provide feedback on the list.

