[lpo Jarvinen

29th Apr 2020
tcpm interim

w Full Accurate ECN implementation?

» Built on top of earlier work (by Mirja Kiihlewind and Olivier
Tilmans)
Initially based on -09
First(?) implementation with AccECN Option
Some technical challenges discovered, none insurmountable
Feedback from the implementation incorporated into -10

» In addition, created a packetdrill unit test suite?

https://github.com/ij1/linux-accecn /tree/test-series3
2https://github.com/ij1/packetdrill-accecn /commits/accecn

29th Apr 2020 tcpm interim 2

What is the "handshake reflector”?

m Feeds back ECN codepoint during 3-way handshake to allow
validating against path mangling
m Overloads the same header bits (ECE, CWR, and AE) as
AccECN ACE field later on
m SYN's ECN codepoint encoded into SYNACK
= In -09, SYNACK's ECN codepoint encoded into 3rd ACK of
3-way handshake & first data seg
= These segment have SYN=0
= Reliable channel provided by the first data seg
= To avoid ACE field ambiguities, all similar segments must use
the same encoding
= Important note: changes made into this in -10

29th Apr 2020 tcpm interim 3

m Challenges related to retransmissions

u Receiving different ECN codepoint for original and rexmit
m Unsure which packets arrive to the other end

= s.cep & r.cep initialization and behavior on CE must consider
all scenarios

m Challenges with handshake reflector using SYN=0 segments

m SYN=O reflector tx & rx require additional “state” (in -09)
» Handshake reflection masks ACE in ACKs (in -09)

= Disables AccECN for a half-connection with unidirectional

flows
m Segmentation offloading & reflector in 1st data seg (in -09)
m TFO might skip the ordinary 3rd ACK & "first data seg” (data

already in SYN)

= Seqno assumptions cannot be synchronized

Delayed arrival of the reflected value

29th Apr 2020 tcpm interim 4

m More complex rules based on both sequence numbers

u Offer only limited help, still problems with DupACKs
u Use option for SYN=0 reflector

m Would take a step backwards, option should not be required
= Only send SYN=O0 reflector in 3rd ACK

= Signalling is unreliable but relatively simple

= Can leverage existing state transitions & triggers
m Occasional loss of ECN field mangling detection is not
catastrophic

m ACE interpretation is ambiguous in a few cases
= But no catastrophic consequences from misinterpretation

» Adopted in -10

29th Apr 2020 tcpm interim 5

m CWR flag behavior differs from RFC3168
m RFC3168 aware tx clears CWR after 1st segment, corrupts
ACE field
m Changes in ACE field should not be masked by rx offloading
» Software-based offloading (GSO/GRO)
m Requires changing a few lines
= CWR flags was used on rx path to flush pending segs
= Removed as AccECN may have a long run of segments with
the same ACE field (and thus same CWR)
= HW offloading (not tested)
» Added device/skb flag to indicate AccECN processing is
supported /required
= NIC not supporting CWR clearing could add the support flag
immediately
u Unknown if CWR clearing can be disabled in NICs supporting
RFC3168 (not investigated, might depend on NIC model)
u If any flags change on rx triggers flush, OK
m Masking changes in ECE/CWR/AE bits during rx offloading
corrupts ACE field

29th Apr 2020 tcpm interim 6

m AccECN Option carries 24-bit LSB parts of 32-bit ECN byte
counters
m Sums of payload bytes with each ECN codepoint (ECTO0/1,
CE)
m AccECN Option is not always sent by the receiver
m Draft gives rules when to send (at minimum, mostly with
SHOULDs)

= Implementations are expected to estimate the ECN byte
counters between AccECN Options

m Requires byte counter delta based heuristic to decide which
counter to increase next

29th Apr 2020 tcpm interim 7

In -09: (xx+ = counter incr)
P ACK+0pt
DATA10 ——————-—- ECT1->
DATA11 --———————- ECT1->
DATA12 ——-————--——- CE->
<-- ACK+0pt (elb+,ceb+)
DATA13 —-—-————————- CE->
elb+ —mmmmmmm e ACK
or ceb+?
DATA14 —————--—- ECT1->
elb+ <-- ACK+0pt (elb+,ceb+)
or ceb+?

Solution in -10:

<-- ACK+0pt (elb+,ceb+)
DATA13 —---------- CE->
ceb+, <-m——-——- ACK+0pt (ceb+)

m To detect ECN codepoint changes,

receiver SHOULD send
change-triggered ACKs

However, change-triggered ACKs in
-09 are not enough to construct
the received ECN pattern

E.g., ECT1 — CE edge, the
change-triggered ACK increases
elb & ceb

Solution in -10: Send option in the
change-triggered ACK and in the
next ACK

m Increases only ceb, unambiguous

29th Apr 2020 tcpm int 8

0 1 2 3
01234567890123456789012345678901
tt—t—t—t—t—t—t—t—t =ttt bt b=ttt bttt =t~ bbbt —t—+—+

Kind = TBD1	Length = 11	Reserved	[Cnt	EEOB field
EEOB (cont’d)	ECEB field			
ECEB (cont’d)	EE1B field			

m Place which counter to increase into AccECN Option
m 2-bits required (Cnt), (same encoding as in IP ECN field)
m Last value of Cnt selects byte counter to increase when ACK
w/o AccECN option (or w/o byte counters) arrives
m Very simple, sender does not need to guess using heuristic
» 1 byte flag octet could provide necessary space (not included
into -11)
m 6-bits remain available for other/future use
= Any comments on this from the working group?

29th Apr 2020 tcpm interim]

m ACK loss may hide counter switch

elb+ Cmmmmmm e ACK+0pt (elb+) m Sender estimates into wrong
DATA10 ----------- ECT1-> unsigned 32-bit counter
DATA1L ~----mmmmoo ECT1-> = Need to correct the counter
DATA12 —-—-------- ECTO->
lost X--- ACK+Opt (e1b+,e0b+) downwards
DATA13 —--------—- ECTO-> = Unsigned mod 22* delta yields
lost Romoomme ACK+0pt (eOb+) incorrect results
DATA14 ———----==—- ECTO->
elb+? < ack = Solutions
DATALS ——————-———- ECT1-> = Either duplicate the counter
elb- <---- ACK+0pt (eOb+,elb-)

variables
m Or do update as 24-bit signed
values (to allow decrease)
= Also, must “beacon” every 222
bytes received to avoid counter
overflow (large TCP windows)

29th Apr 2020 tcpm interim 10

m If option is not present in the previous ACK, CEB delta
(d.ceb) is not available (or is just based on an estimate)

m Algorithm in Appendix A.2.2. depends on d.ceb for confirming
ACE overflow

» Therefore, when ACK is sent and ACE/CEP has increased,
include AccECN option

m To synchronize s.ceb and calculate d.ceb
m Not strictly necessary if the estimation works correctly

= Still a good defense in depth approach from robustness point
of view

29th Apr 2020 tcpm interim 11

th Apr 2020 tcpm interim 12

» Reflector masks ACE/CEP for

Client sequo used: normal ACKs/DupACKs
SYN —=-mm-mmmme > m If both seqnos are used, impact is
ncremag, AC limited due to the dupACK thresh
e DATAL and response to (what is likely) a
Cmmmmmmeem DATA2 loss of data seg

masked ﬁflﬁr_{fﬂ_:_;;;\; m SACKs could be used to
oo DATA4 differentiate further

masked ACK+Refl ------ >

m Even if reflector would not be put
Both seqnos used: into DupACKs, ACE field
interpretation is ambiguous

SYN ---—--——-—- >
<=—-——-—- SYNACK
3rdACK+Refl --->
lost X-===-- DATA1
<==mmmmm— DATA2
masked DupACK+Refl --->
=== DATA3

masked DupACK+Refl --->

29th Apr 2020 tcpm interim 13

Vs

SYN+TFO+DATA1 ----- >
<-- DATA1+TFO+SYNACK
DATA2+REFL? ------- >
SYN+TFO+DATA1 ----- >
X- DATA1+TFO+SYNACK
SYN --—--———m - >
St it SYNACK
ACK+REFL ---------- >
DATA1+REFL -------- >

= Bidirection data with TFO
advances both sequence numbers

m Definition of “3rd” ACK or 1st
data seg is not agreed by the end
hosts

m The sending end cannot know what
the receiving end got

m Seqno assumptions cannot be
synchronized

29th Apr 2020 tcpm interim 14

m Reflector prevents using TCP

SYN ======mmmmm > segmentation offloading (TSO) for
D SYNACK 1st segment
SrdACK+REFL ---> = This may have some implications
No DATA1+REFL ----> on processing requirements
TSQ! DATA2+ACE --—-- > = Most flows are short

= But no impact for 1 MSS flows

29th Apr 2020 tcpm interim 15

» 3rd ACK/1st data seg is not always

SYN ——==mmmmm- > 1st segment the peer sees
DU SYNACK m Losses, reordering, unnecessary
lost 3rdACK+Refl -X SYN/ACK rexmits
lost DATA1+Refl --X _ pcN flags bleaching checks can
1st recv DATA2+ACE ————- >

still be applied to the 1st arriving
segment though

29th Apr 2020 tcpm interim 16

