
Accurate ECN Linux Implementation
Experiences and Challenges

Ilpo Järvinen

29th Apr 2020
tcpm interim

Accurate ECN Linux Implementation

Full Accurate ECN implementation1

Built on top of earlier work (by Mirja Kühlewind and Olivier
Tilmans)
Initially based on -09
First(?) implementation with AccECN Option
Some technical challenges discovered, none insurmountable
Feedback from the implementation incorporated into -10

In addition, created a packetdrill unit test suite2

1https://github.com/ij1/linux-accecn/tree/test-series3
2https://github.com/ij1/packetdrill-accecn/commits/accecn

29th Apr 2020 tcpm interim 2

Accurate ECN Handshake Reflector Background

What is the ”handshake reflector”?

Feeds back ECN codepoint during 3-way handshake to allow
validating against path mangling

Overloads the same header bits (ECE, CWR, and AE) as
AccECN ACE field later on
SYN’s ECN codepoint encoded into SYNACK
In -09, SYNACK’s ECN codepoint encoded into 3rd ACK of
3-way handshake & first data seg

These segment have SYN=0
Reliable channel provided by the first data seg
To avoid ACE field ambiguities, all similar segments must use
the same encoding
Important note: changes made into this in -10

29th Apr 2020 tcpm interim 3

AccECN Handshake Challenges

Challenges related to retransmissions

Receiving different ECN codepoint for original and rexmit
Unsure which packets arrive to the other end

s.cep & r.cep initialization and behavior on CE must consider
all scenarios

Challenges with handshake reflector using SYN=0 segments

SYN=0 reflector tx & rx require additional “state” (in -09)
Handshake reflection masks ACE in ACKs (in -09)

Disables AccECN for a half-connection with unidirectional
flows

Segmentation offloading & reflector in 1st data seg (in -09)
TFO might skip the ordinary 3rd ACK & ”first data seg” (data
already in SYN)

Seqno assumptions cannot be synchronized

Delayed arrival of the reflected value

29th Apr 2020 tcpm interim 4

Handshake Reflector Solution Space (SYN=0 Case)

More complex rules based on both sequence numbers

Offer only limited help, still problems with DupACKs

Use option for SYN=0 reflector

Would take a step backwards, option should not be required

Only send SYN=0 reflector in 3rd ACK
Signalling is unreliable but relatively simple

Can leverage existing state transitions & triggers
Occasional loss of ECN field mangling detection is not
catastrophic

ACE interpretation is ambiguous in a few cases

But no catastrophic consequences from misinterpretation

Adopted in -10

29th Apr 2020 tcpm interim 5

AccECN and TCP Segmentation Offloading

CWR flag behavior differs from RFC3168
RFC3168 aware tx clears CWR after 1st segment, corrupts
ACE field
Changes in ACE field should not be masked by rx offloading

Software-based offloading (GSO/GRO)
Requires changing a few lines
CWR flags was used on rx path to flush pending segs

Removed as AccECN may have a long run of segments with
the same ACE field (and thus same CWR)

HW offloading (not tested)
Added device/skb flag to indicate AccECN processing is
supported/required
NIC not supporting CWR clearing could add the support flag
immediately
Unknown if CWR clearing can be disabled in NICs supporting
RFC3168 (not investigated, might depend on NIC model)
If any flags change on rx triggers flush, OK

Masking changes in ECE/CWR/AE bits during rx offloading
corrupts ACE field

29th Apr 2020 tcpm interim 6

AccECN Option Background

AccECN Option carries 24-bit LSB parts of 32-bit ECN byte
counters

Sums of payload bytes with each ECN codepoint (ECT0/1,
CE)

AccECN Option is not always sent by the receiver

Draft gives rules when to send (at minimum, mostly with
SHOULDs)

Implementations are expected to estimate the ECN byte
counters between AccECN Options

Requires byte counter delta based heuristic to decide which
counter to increase next

29th Apr 2020 tcpm interim 7

AccECN Option and Change-Triggered ACKs

In -09: (xx+ = counter incr)

...

<------------- ACK+Opt

DATA10 ---------ECT1->

DATA11 ---------ECT1->

DATA12 -----------CE->

<-- ACK+Opt(e1b+,ceb+)

DATA13 -----------CE->

e1b+ <----------------- ACK

or ceb+?

DATA14 ---------ECT1->

e1b+ <-- ACK+Opt(e1b+,ceb+)

or ceb+?

Solution in -10:

...

DATA12 -----------CE->

<-- ACK+Opt(e1b+,ceb+)

DATA13 -----------CE->

ceb+, <--------ACK+Opt(ceb+)

��XXe1b+

To detect ECN codepoint changes,
receiver SHOULD send
change-triggered ACKs

However, change-triggered ACKs in
-09 are not enough to construct
the received ECN pattern

E.g., ECT1 → CE edge, the
change-triggered ACK increases
e1b & ceb

Solution in -10: Send option in the
change-triggered ACK and in the
next ACK

Increases only ceb, unambiguous

29th Apr 2020 tcpm interim 8

Byte Counter Select Proposal for Simpler Estimation?

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Kind = TBD1 | Length = 11 | Reserved |Cnt| EE0B field |

+-+

| EE0B (cont’d) | ECEB field |

+-+

| ECEB (cont’d) | EE1B field |

+-+

Place which counter to increase into AccECN Option
2-bits required (Cnt), (same encoding as in IP ECN field)

Last value of Cnt selects byte counter to increase when ACK
w/o AccECN option (or w/o byte counters) arrives

Very simple, sender does not need to guess using heuristic

1 byte flag octet could provide necessary space (not included
into -11)

6-bits remain available for other/future use
Any comments on this from the working group?

29th Apr 2020 tcpm interim 9

AccECN Counter Updates and Estimation Errors

...

e1b+ <--------- ACK+Opt(e1b+)

DATA10 -----------ECT1->

DATA11 -----------ECT1->

DATA12 -----------ECT0->

lost X--- ACK+Opt(e1b+,e0b+)

DATA13 -----------ECT0->

lost X-------- ACK+Opt(e0b+)

DATA14 -----------ECT0->

e1b+? <------------------- ACK

DATA15 -----------ECT1->

e1b- <---- ACK+Opt(e0b+,e1b-)

ACK loss may hide counter switch

Sender estimates into wrong
unsigned 32-bit counter
Need to correct the counter
downwards
Unsigned mod 224 delta yields
incorrect results

Solutions

Either duplicate the counter
variables
Or do update as 24-bit signed
values (to allow decrease)

Also, must “beacon” every 222

bytes received to avoid counter
overflow (large TCP windows)

29th Apr 2020 tcpm interim 10

AccECN Option CEP and CEB Deltas

If option is not present in the previous ACK, CEB delta
(d.ceb) is not available (or is just based on an estimate)

Algorithm in Appendix A.2.2. depends on d.ceb for confirming
ACE overflow

Therefore, when ACK is sent and ACE/CEP has increased,
include AccECN option

To synchronize s.ceb and calculate d.ceb
Not strictly necessary if the estimation works correctly

Still a good defense in depth approach from robustness point
of view

29th Apr 2020 tcpm interim 11

Backup Slides

29th Apr 2020 tcpm interim 12

Handshake Reflector Masks ACE on ACKs (in -09)

Client seqno used:

SYN ----------->

<-------- SYNACK

3rdACK+Refl --->

<--------- DATA1

<--------- DATA2

masked ACK+Refl ------>

<--------- DATA3

<--------- DATA4

masked ACK+Refl ------>

Both seqnos used:

SYN ----------->

<-------- SYNACK

3rdACK+Refl --->

lost X------ DATA1

<--------- DATA2

masked DupACK+Refl --->

<--------- DATA3

masked DupACK+Refl --->

Reflector masks ACE/CEP for
normal ACKs/DupACKs

If both seqnos are used, impact is
limited due to the dupACK thresh
and response to (what is likely) a
loss of data seg

SACKs could be used to
differentiate further

Even if reflector would not be put
into DupACKs, ACE field
interpretation is ambiguous

29th Apr 2020 tcpm interim 13

TFO and SYN=0 Handshake Reflector

SYN+TFO+DATA1 ----->

<-- DATA1+TFO+SYNACK

DATA2+REFL? ------->

VS

SYN+TFO+DATA1 ----->

X- DATA1+TFO+SYNACK

SYN --------------->

<------------ SYNACK

ACK+REFL ---------->

DATA1+REFL -------->

Bidirection data with TFO
advances both sequence numbers

Definition of “3rd” ACK or 1st
data seg is not agreed by the end
hosts

The sending end cannot know what
the receiving end got

Seqno assumptions cannot be
synchronized

29th Apr 2020 tcpm interim 14

Handshake Reflector Prevents TSO for 1st Seg (in -09)

SYN ----------->

<-------- SYNACK

3rdACK+REFL --->

No DATA1+REFL ---->

TSO! DATA2+ACE ----->

Reflector prevents using TCP
segmentation offloading (TSO) for
1st segment

This may have some implications
on processing requirements

Most flows are short
But no impact for 1 MSS flows

29th Apr 2020 tcpm interim 15

Final ACK/1st Segment not 1st Arriving Seg

SYN ----------->

<-------- SYNACK

lost 3rdACK+Refl -X

lost DATA1+Refl --X

1st recv DATA2+ACE ----->

3rd ACK/1st data seg is not always
1st segment the peer sees

Losses, reordering, unnecessary
SYN/ACK rexmits

ECN flags bleaching checks can
still be applied to the 1st arriving
segment though

29th Apr 2020 tcpm interim 16

