More Accurate ECN Feedback in TCP draft-ietf-tcpm-accurate-ecn-11 & -10

<u>Bob Briscoe</u>, Independent Mirja Kühlewind, Ericsson Richard Scheffenegger, NetApp

IETF interim-2020-tcpm-01 Apr 2020

Problem (Recap) Congestion Existence, not Extent

- Explicit Congestion Notification (ECN)
 - routers/switches mark more packets as load grows
 - RFC3168 added ECN to IP and TCP

IP- ECN	Codepoint	Meaning				
00	not-ECT	No ECN				
10	ECT(0)	ECN-Capable Transport				
01	ECT(1)					
11	CE	Congestion Experienced				

0 0 1 2 3	4 5 6 7	8	9	1 0	1	2	3	4	5	6	7	8	9	2 0	1	2	3	4	5	6	7	8	9	3 0	1
Port no's, Seq no's																									
Data Offset	Res- erved	C W R	E C E	U R G	A C K	P S H	R S T	S Y N	F I N							V	√in	ıdo	W						
Checksum									Urgent Pointer																
TCP Optio	TCP Options																								

- Problem with RFC3168 ECN feedback:
 - only one TCP feedback per RTT
 - rcvr repeats ECE flag for reliability, until sender's CWR flag acks it
 - suited TCP at the time one congestion response per RTT

Solution (recap) Congestion extent, not just existence

- AccECN: Change to TCP wire protocol
 - Repeated count of CE packets (ACE) essential
 - and CE bytes (AccECN Option) supplementary

0 0 1 2 3	4 5 6	789	1 0	1	2	3	4	5	6	7	8	9	2 0	1	2	3	4	5	6	7	8	9	3 0	1
Port no's, Seq no's																								
Data Res- Offset erved ACE U A P R S F R C S S Y I G K H T N N Window																								
	Checksum Urgent Pointer																							
TCP Optio	ons																							
AccECN Option, length: min 2B, typ 5/8B, max 11B																								
TCP Options																								

- Key to congestion control for low queuing delay
 - 0.5 ms (vs. 5-15 ms) over public Internet
- Applicability: (see spare slide)

Activity since last status update (Nov'19)

- -09 to -10 numerous minor tech changes:
 - from list discussion since Nov-2019
 - niggles identified by Ilpo Jarvinen during Linux implementation for upstreaming
 based on Olivier Tilman's, based on Mirja's
 - 6 main area covered on following slides:
 - Rights and obligations re. use of ECN
 - Backwards compatibility negotiation (tweaks)
 - Mangling Detection (tweaks)
 - Wrap of 3-bit ACE counter (tweak)
 - AccECN TCP Option (field order and usage)
 - Unusual Packet Arrivals
- -10 to -11 changes for exp \rightarrow stds track

Changes $09 \rightarrow 10$ (Technical 1/6) Rights & obligations re. use of ECN

"Implications of AccECN Mode"

 New section comparable to similar points in RFC3168

Data Sender in AccECN mode:

- can set ECT
- does not have to set ECT
- Congestion response
 - obliged to respond to CE f/b, as in RFC3168 as updated by RFC8311
 - MUST NOT set CWR on response

Data Rcvr in AccECN mode:

- MUST feed back IP-ECN as in §3.2
- if unwilling to send ECN feedback, should clear AE, CWR and ECE flags in SYNs and/or SYN/ACKs
- MUST NOT use reception of ECT in IP header as an implicit signal of ECN capability (could be due to mangling)

Changes $09 \rightarrow 10$ (Technical 2/6) **Backwards Compatibility Negotiation** tweaks Offer: AccECN

- AccECN server need not implement RFC3168 ECN (all clients still have to)
- Preclude mixed capability negotiation from either end
 - MUST NOT send SYNs or SYN/ACKs for both AccECN and RFC3168 ECN
 - If receive both, send RST
 - Reason: to prevent cases where each end's outcome after handshake could be inconsistent (in reordering corner-cases)
 - Implication: reduces freedom to choose SYN & SYN/ACK fall-back strategies
- Require retransmitted Fallback SYN to use same ISN
 - allows servers to detect ECN downgrade SYN attacks
- Reserved the codepoint combination used by the historic nonce case

+ A 	+ B 	-+- 	SI	/N A-	·>B	+ +	SYN// B->	ACK >A	- + · 	Feedback Mode	+·
			AE	CWR	ECE	AE	CWR	ECE			
AccEC	N Nonce	Ι	1	1	1	1	0	1	Ι	(Reserved)	I

Accept: AccECN

Offer: AccECN

Offer: Non-ECI

OR ECN

OR non-ECN

Mangling Detection Recap Feedback of IP/ECN during 3WHS

SYNACK 1 SYNACK 1 SYNACK 1 SYNACK 1 SYNACK 1 SYNACK 1 SYNACK

A	B	S`	YN A-	>B	SYN/	ACK	B->A	Feedback Mode
ACCECN ACCECN ACCECN ACCECN	ACCECN ACCECN ACCECN ACCECN ACCECN	AE 1 1 1	CWR 1 1 1	ECE 1 1 1 1	AE 0 0 1 1	CWR 1 1 0 1	ECE 0 1 0 0	AccECN (Not-ECT on SYN) AccECN (ECT1 on SYN) AccECN (ECT0 on SYN) AccECN (CE on SYN)

• Same coding on ACK

ຈ	+	+
IP-ECN codepoint on	ACE on pure ACK of	r.cep of client in
SYN/ACK	SYN/ACK	AccECN mode
Not-ECT	0b 0 1 0	5
ECT(1)	0b 0 1 1	5
ECT(0)	0b 1 0 0	5
CE	0b 1 1 0	6

Changes $09 \rightarrow 10$ (Technical 3/6) Mangling Detection Tweaks

- Reflect IP-ECN field of SYN/ACK only on ACK of SYN/ACK, (not also on first data packet)
 - Reason: greatly simplifies implementation, esp with TFO.
 - repeating on first data packet was for reliable delivery, which is now achieved with ACE counter (see next bullet)
- Increment the ACE counter if CE on SYN/ACK but (still) not if CE on SYN
 - Reliable delivery of feedback of CE on SYN/ACK
 - Full mangling detection only unreliably delivered
 - Increment ACE no more than once (consistent with reflection on ACK)
- Redefine 'first packet' as first to arrive, not first in sequence in 2 cases:
 - Handshake reflection on the ACK of the SYN/ACK
 - In the test for zeroing of ACE
 - Reason: greatly simplifies implementation

Changes 09 \rightarrow 10 (Technical 4/6) Wrap of 3-bit ACE counter

- If ACE could have wrapped more than once, SHOULD assume "safest likely case"
 - not "conservatively assume" it did cycle
 - example algorithm in appendix
- Reason: avoid unnecessary hit on performance

Changes $09 \rightarrow 10$ (Technical 5/6) ACCECN TCP Option

• Allowed 2 different orders of the fields in the AccECN Option

kind	length	EE0B [init=1]	ECEB [init=0]	EE1B [init=0]
kind	length	EE1B [init=0x800001]	ECEB [init=0]	EE0B [init=0]

• Since consensus at IETF-107, Michael Scharf strongly disagrees; Alternatives:

1) Two Option Kinds, or

2)Add flags byte to option (see Ilpo's talk)

• More robustness (with flexibility) in rules including an AccECN Option

- Change-triggered AccECN Option as SHOULD, not MUST
- SHOULD follow change-triggered AccECN Option with another (removes ambiguity if ACK thinning or loss)
- when same counter continues to increment, SHOULD consistently include it every n ACKs
- Made rule about precedence of SACK conditional (max 2 SACK blocks)
- MAY exclude counters that have not changed for the whole connection

Changes 09 \rightarrow 10 (Technical 6/6) Unusual Packet Arrivals

 Handled corner cases like In-window SYN during TIME-WAIT

Changes $09 \rightarrow 10$ (Editorial)

- Rationalized the structure and order of the sections
 - where the draft had evolved organically, some behaviours had been inserted in an irrelevant section, and others were repeated in two places
 - a number of the longer sections have been sub-sectioned to be clearer (and to be able to refer to specific aspects of the behaviour from other places)
- Added normative text for a number of the main behaviours (thx Ilpo)
 - obvious from the examples in the appendices, but not actually stated in the body.
- Acceptable Packets
 - Explicit about checking "acceptable packets"
 - before counting their ECN markings or before counting the ECN feedback they carry
- Caught text in one place that mentions a superseded behaviour in another
- Added reordering aspects to the summary of protocol properties
- Added to the justification for consuming header flags

Changes $10 \rightarrow 11$

- EXP track to STD track
 - Caught mentions of "experiment" throughout
 - Removed Experiment Goals section
 - New section "Updates to RFC 3168"

RFC3168	AccECN
§6.1.1 "TCP Initialization"	§3.1 "Negotiating to use AccECN"
§6.1.2. "The TCP Sender"	All stands exceptrespond to counters not ECEsetting CWR no longer applies
§6.1.3. "The TCP Receiver"	§3.2 "AccECN Feedback"
§6.1.5. Acceptable re-xmt packet test	More stringent Acceptable Packet tests (for all packets)
§5.2, §6.1.1, §6.1.4, §6.1.5 and §6.1.6 prohibits use of ECT on ctrl pkts & rexmt	Requirements unchanged, but f/b defined, if such a pkt is not Not-ECT

Can reflection tests be removed?

- If mangling becomes a non-problem long-term
- Free up codepoints?
 - Would like to reduce from 4 to 2 reflection codes on SYN/ACK & on 3rd ACK
 - possible, but a drawn-out 2-stage process
 - burn another code: Not CE = Not ECN || ECT0 || ECT1 then wait for use of the 3 old codes to subside
- Free up test processing?
 - Either end can just not check for a valid transition but they have to check for the CE transition anyway

Status & Next Steps

- Full implementation in Linux⁽¹⁾
 - patch (in 28 sequenced parts) submitted for upstreaming
 - on hold pending ECT(1) decision
- Implemented without TCP Option in FreeBSD⁽²⁾
- Ready for WGLC as soon as tsvwg makes ECT(1) decision
- draft-ietf-tcpm-generalized-ecn in same holding stack

(1) https://github.com/L4STeam/linux/tree/testing(2) https://reviews.freebsd.org/D21011

AccECN

Where AccECN Fits

- Can only enable AccECN if both TCP endpoints support it (1)
 - but no dependency on network changes
- Extends the feedback part of TCP wire protocol
- Foundation for new sender-only changes (and for existing TCP), e.g.
 - congestion controls (TBA):
 - 'TCP Prague' for L4S ⁽²⁾
 - BBR+ECN
 - Full benefit of ECN-capable TCP control packets (ECN++) (3)

(1) Backwards compatible handshake

- SYN: offer AccECN
 SYN-ACK can accept AccECN, ECN or non-ECN
- (2) Low Latency Low Loss Scalable throughput [draft-ietf-tsvwg-l4s-arch]
- (3) Without AccECN, benefit of ECN++ excluded from SYN [draft-ietf-tcpm-generalized-ecn]

17