
TEEP H. Tschofenig
Internet-Draft
Intended status: Standards Track M. Pei
Expires: 9 May 2024 Broadcom
 D. Wheeler
 Amazon
 D. Thaler
 Microsoft
 A. Tsukamoto
 ALAXALA Networks Corp.
 6 November 2023

 Trusted Execution Environment Provisioning (TEEP) Protocol
 draft-ietf-teep-protocol-18

Abstract

 This document specifies a protocol that installs, updates, and
 deletes Trusted Components in a device with a Trusted Execution
 Environment (TEE). This specification defines an interoperable
 protocol for managing the lifecycle of Trusted Components.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 May 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.

Tschofenig, et al. Expires 9 May 2024 [Page 1]

Internet-Draft TEEP Protocol November 2023

 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 4
 3. Message Overview . 5
 4. Detailed Messages Specification 6
 4.1. Creating and Validating TEEP Messages 7
 4.1.1. Creating a TEEP message 7
 4.1.2. Validating a TEEP Message 7
 4.2. QueryRequest Message 8
 4.3. QueryResponse Message 12
 4.3.1. Evidence and Attestation Results 15
 4.4. Update Message . 16
 4.4.1. Scenario 1: Having one SUIT Manifest pointing to a URI
 of a Trusted Component Binary 19
 4.4.2. Scenario 2: Having a SUIT Manifest include the Trusted
 Component Binary 22
 4.4.3. Scenario 3: Supplying Personalization Data for the
 Trusted Component Binary 23
 4.5. Success Message . 25
 4.6. Error Message . 26
 5. EAT Profile . 30
 5.1. Relationship to AR4SI 31
 6. Mapping of TEEP Message Parameters to CBOR Labels 32
 7. Behavior Specification 34
 7.1. TAM Behavior . 34
 7.1.1. Handling a QueryResponse Message 35
 7.1.1.1. Handling an Attestation Result 35
 7.1.2. Handling a Success or Error Message 37
 7.2. TEEP Agent Behavior 37
 7.2.1. Handling a QueryRequest Message 38
 7.2.1.1. Handling an Attestation Result 39
 7.2.2. Handling an Update Message 39
 8. Cipher Suites . 39
 8.1. TEEP Messages . 40
 8.2. EATs and SUIT Reports 42
 9. Attestation Freshness Mechanisms 44
 10. Security Considerations 44
 11. Privacy Considerations 47
 12. IANA Considerations . 47
 12.1. Media Type Registration 47
 13. References . 48

Tschofenig, et al. Expires 9 May 2024 [Page 2]

Internet-Draft TEEP Protocol November 2023

 13.1. Normative References 48
 13.2. Informative References 50
 A. Contributors . 52
 B. Acknowledgements . 52
 C. Complete CDDL . 52
 D. Examples of Diagnostic Notation and Binary Representation . . 56
 D.1. QueryRequest Message 57
 D.1.1. CBOR Diagnostic Notation 57
 D.1.2. CBOR Binary Representation 57
 D.2. Entity Attestation Token 58
 D.2.1. CBOR Diagnostic Notation 58
 D.3. QueryResponse Message 59
 D.3.1. CBOR Diagnostic Notation 59
 D.3.2. CBOR Binary Representation 60
 D.4. Update Message . 61
 D.4.1. CBOR Diagnostic Notation 61
 D.4.2. CBOR Binary Representation 62
 D.5. Success Message . 62
 D.5.1. CBOR Diagnostic Notation 62
 D.5.2. CBOR Binary Representation 63
 D.6. Error Message . 63
 D.6.1. CBOR Diagnostic Notation 63
 D.6.2. CBOR binary Representation 63
 E. Examples of SUIT Manifests 64
 Example 1: SUIT Manifest pointing to URI of the Trusted Component
 Binary . 64
 CBOR Diagnostic Notation of SUIT Manifest 64
 CBOR Binary in Hex . 65
 Example 2: SUIT Manifest including the Trusted Component
 Binary . 66
 CBOR Diagnostic Notation of SUIT Manifest 66
 CBOR Binary in Hex . 67
 Example 3: Supplying Personalization Data for Trusted Component
 Binary . 68
 CBOR Diagnostic Notation of SUIT Manifest 68
 CBOR Binary in Hex . 71
 F. Examples of SUIT Reports 71
 F.1. Example 1: Success 72
 F.2. Example 2: Faiure . 72
 Authors’ Addresses . 73

Tschofenig, et al. Expires 9 May 2024 [Page 3]

Internet-Draft TEEP Protocol November 2023

1. Introduction

 The Trusted Execution Environment (TEE) concept has been designed to
 separate a regular operating system, also referred as a Rich
 Execution Environment (REE), from security-sensitive applications.
 In a TEE ecosystem, device vendors may use different operating
 systems in the REE and may use different types of TEEs. When Trusted
 Component Developers or Device Administrators use Trusted Application
 Managers (TAMs) to install, update, and delete Trusted Applications
 and their dependencies on a wide range of devices with potentially
 different TEEs then an interoperability need arises.

 This document specifies the protocol for communicating between a TAM
 and a TEEP Agent.

 The Trusted Execution Environment Provisioning (TEEP) architecture
 document [RFC9397] provides design guidance and introduces the
 necessary terminology.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification re-uses the terminology defined in [RFC9397].

 As explained in Section 4.4 of that document, the TEEP protocol
 treats each Trusted Application (TA), any dependencies the TA has,
 and personalization data as separate components that are expressed in
 SUIT manifests, and a SUIT manifest might contain or reference
 multiple binaries (see [I-D.ietf-suit-manifest] for more details).

 As such, the term Trusted Component (TC) in this document refers to a
 set of binaries expressed in a SUIT manifest, to be installed in a
 TEE. Note that a Trusted Component may include one or more TAs and/
 or configuration data and keys needed by a TA to operate correctly.

 Each Trusted Component is uniquely identified by a SUIT Component
 Identifier (see [I-D.ietf-suit-manifest] Section 8.7.2.2).

 Attestation related terms, such as Evidence and Attestation Results,
 are as defined in [RFC9334].

Tschofenig, et al. Expires 9 May 2024 [Page 4]

Internet-Draft TEEP Protocol November 2023

3. Message Overview

 The TEEP protocol consists of messages exchanged between a TAM and a
 TEEP Agent. The messages are encoded in CBOR and designed to provide
 end-to-end security. TEEP protocol messages are signed by the
 endpoints, i.e., the TAM and the TEEP Agent, but Trusted Applications
 may also be encrypted and signed by a Trusted Component Developer or
 Device Administrator. The TEEP protocol not only uses CBOR but also
 the respective security wrapper, namely COSE [RFC9052]. Furthermore,
 for software updates the SUIT manifest format
 [I-D.ietf-suit-manifest] is used, and for attestation the Entity
 Attestation Token (EAT) [I-D.ietf-rats-eat] format is supported
 although other attestation formats are also permitted.

 This specification defines five messages: QueryRequest,
 QueryResponse, Update, Success, and Error.

 A TAM queries a device’s current state with a QueryRequest message.
 A TEEP Agent will, after authenticating and authorizing the request,
 report attestation information, list all Trusted Components, and
 provide information about supported algorithms and extensions in a
 QueryResponse message. An error message is returned if the request
 could not be processed. A TAM will process the QueryResponse message
 and determine whether to initiate subsequent message exchanges to
 install, update, or delete Trusted Applications.

 +------------+ +-------------+
 | TAM | |TEEP Agent |
 +------------+ +-------------+

 QueryRequest ------->

 QueryResponse

 <------- or

 Error

 With the Update message a TAM can instruct a TEEP Agent to install
 and/or delete one or more Trusted Components. The TEEP Agent will
 process the message, determine whether the TAM is authorized and
 whether the Trusted Component has been signed by an authorized
 Trusted Component Signer. A Success message is returned when the
 operation has been completed successfully, or an Error message
 otherwise.

Tschofenig, et al. Expires 9 May 2024 [Page 5]

Internet-Draft TEEP Protocol November 2023

 +------------+ +-------------+
 | TAM | |TEEP Agent |
 +------------+ +-------------+

 Update ---->

 Success

 <---- or

 Error

4. Detailed Messages Specification

 TEEP messages are protected by the COSE_Sign1 or COSE_Sign structure
 as described in Section 8.1. The TEEP protocol messages are
 described in CDDL format [RFC8610] below.

 teep-message = $teep-message-type .within teep-message-framework

 teep-message-framework = [
 type: $teep-type / $teep-type-extension,
 options: { * teep-option },
 * any; further elements, e.g., for data-item-requested
]

 teep-option = (uint => any)

 ; messages defined below:
 $teep-message-type /= query-request
 $teep-message-type /= query-response
 $teep-message-type /= update
 $teep-message-type /= teep-success
 $teep-message-type /= teep-error

 ; message type numbers, in one byte which could take a number from 0 to 23
 $teep-type = (0..23)
 TEEP-TYPE-query-request = 1
 TEEP-TYPE-query-response = 2
 TEEP-TYPE-update = 3
 TEEP-TYPE-teep-success = 5
 TEEP-TYPE-teep-error = 6

Tschofenig, et al. Expires 9 May 2024 [Page 6]

Internet-Draft TEEP Protocol November 2023

4.1. Creating and Validating TEEP Messages

4.1.1. Creating a TEEP message

 To create a TEEP message, the following steps are performed.

 1. Create a TEEP message according to the description below and
 populate it with the respective content. TEEP messages sent by
 TAMs (QueryRequest and Update) can include a "token". The TAM
 can decide, in any implementation-specific way, whether to
 include a token in a message. The first usage of a token
 generated by a TAM MUST be randomly created. Subsequent token
 values MUST be different for each subsequent message created by a
 TAM.

 2. Create a COSE Header containing the desired set of Header
 Parameters. The COSE Header MUST be valid per the [RFC9052]
 specification.

 3. Create a COSE_Sign1 or COSE_Sign object using the TEEP message as
 the COSE_Sign1 or COSE_Sign Payload; all steps specified in
 [RFC9052] for creating a COSE_Sign1 or COSE_Sign object MUST be
 followed.

4.1.2. Validating a TEEP Message

 When a TEEP message is received (see the ProcessTeepMessage
 conceptual API defined in Section 6.2.1 of [RFC9397]), the following
 validation steps are performed. If any of the listed steps fail,
 then the TEEP message MUST be rejected.

 1. Verify that the received message is a valid CBOR object.

 2. Verify that the message contains a COSE_Sign1 or COSE_Sign
 structure.

 3. Verify that the resulting COSE Header includes only parameters
 and values whose syntax and semantics are both understood and
 supported or that are specified as being ignored when not
 understood.

 4. Follow the steps specified in Section 4 of [RFC9052] ("Signing
 Objects") for validating a COSE_Sign1 or COSE_Sign object. The
 COSE_Sign1 or COSE_Sign payload is the content of the TEEP
 message.

 5. Verify that the TEEP message is a valid CBOR map and verify the
 fields of the TEEP message according to this specification.

Tschofenig, et al. Expires 9 May 2024 [Page 7]

Internet-Draft TEEP Protocol November 2023

4.2. QueryRequest Message

 A QueryRequest message is used by the TAM to learn information from
 the TEEP Agent, such as the features supported by the TEEP Agent,
 including cipher suites and protocol versions. Additionally, the TAM
 can selectively request data items from the TEEP Agent by using the
 data-item-requested parameter. Currently, the following features are
 supported:

 * Request for attestation information of the TEEP Agent,

 * Listing supported extensions,

 * Querying installed Trusted Components, and

 * Request for logging information in SUIT Reports.

 Like other TEEP messages, the QueryRequest message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

Tschofenig, et al. Expires 9 May 2024 [Page 8]

Internet-Draft TEEP Protocol November 2023

 query-request = [
 type: TEEP-TYPE-query-request,
 options: {
 ? token => bstr .size (8..64),
 ? supported-freshness-mechanisms => [+ $freshness-mechanism],
 ? challenge => bstr .size (8..512),
 ? versions => [+ version],
 ? attestation-payload-format => text,
 ? attestation-payload => bstr,
 ? suit-reports => [+ bstr],
 * $$query-request-extensions,
 * $$teep-option-extensions
 },
 supported-teep-cipher-suites: [+ $teep-cipher-suite],
 supported-suit-cose-profiles: [+ $suit-cose-profile],
 data-item-requested: uint .bits data-item-requested
]

 version = uint .size 4
 ext-info = uint .size 4

 ; data items as bitmaps
 data-item-requested = &(
 attestation: 0,
 trusted-components: 1,
 extensions: 2,
 suit-reports: 3,
)

 The message has the following fields:

 type
 The value of (1) corresponds to a QueryRequest message sent from
 the TAM to the TEEP Agent.

 token
 The value in the token parameter is used to match responses to
 requests, such as to look up any implementation-specific state it
 might have saved about that request, or to ignore responses to
 older QueryRequest messages before some configuration changes were
 made that affected their content. This is particularly useful
 when a TAM issues multiple concurrent requests to a TEEP Agent.
 The token MUST be present if and only if the attestation bit is
 clear in the data-item-requested value. When the attestation bit
 is clear then a challenge will be included, which offers replay
 protection capabilities. The size of the token is at least 8
 bytes (64 bits) and maximum of 64 bytes. The first usage of a
 token generated by a TAM MUST be randomly created. Subsequent

Tschofenig, et al. Expires 9 May 2024 [Page 9]

Internet-Draft TEEP Protocol November 2023

 token values MUST be different for each request message to
 distinguish the correct response from multiple requests. The
 token value MUST NOT be used for other purposes, such as a TAM to
 identify the devices and/or a device to identify TAMs or Trusted
 Components. The TAM SHOULD set an expiration time for each token
 and MUST ignore any messages with expired tokens. The TAM MUST
 expire the token value after receiving the first response
 containing the token value and ignore any subsequent messages that
 have the same token value.

 supported-teep-cipher-suites
 The supported-teep-cipher-suites parameter lists the TEEP cipher
 suites supported by the TAM. Details about the cipher suite
 encoding can be found in Section 8.1.

 supported-suit-cose-profiles
 The supported-suit-cose-profiles parameter lists the SUIT profiles
 supported by the TAM for parsing SUIT Reports. Details about the
 cipher suite encoding can be found in Section 8.2.

 data-item-requested
 The data-item-requested parameter indicates what information the
 TAM requests from the TEEP Agent in the form of a bitmap.

 attestation (1) With this value the TAM requests the TEEP Agent
 to return an attestation payload, whether Evidence (e.g., an
 EAT) or an Attestation Result, in the response.

 trusted-components (2) With this value the TAM queries the TEEP
 Agent for all installed Trusted Components.

 extensions (4) With this value the TAM queries the TEEP Agent for
 supported capabilities and extensions, which allows a TAM to
 discover the capabilities of a TEEP Agent implementation.

 suit-reports (8) With this value the TAM requests the TEEP Agent
 to return SUIT Reports in the response.

 Further values may be added in the future.

 supported-freshness-mechanisms
 The supported-freshness-mechanisms parameter lists the freshness
 mechanism(s) supported by the TAM. Details about the encoding can
 be found in Section 9. If this parameter is absent, it means only
 the nonce mechanism is supported. It MUST be absent if the
 attestation bit is clear.

 challenge

Tschofenig, et al. Expires 9 May 2024 [Page 10]

Internet-Draft TEEP Protocol November 2023

 The challenge field is an optional parameter used for ensuring the
 freshness of attestation Evidence returned with a QueryResponse
 message. It MUST be absent if the attestation bit is clear or the
 Passport model is used. When a challenge is provided in the
 QueryRequest and Evidence in the form of an EAT is returned with a
 QueryResponse message then the challenge contained in the
 QueryRequest MUST be used to generate the EAT, by copying the
 challenge into the eat_nonce claim (Section 4.1 of Section 5) if
 the nonce-based freshness mechanism is used for attestation
 Evidence. For more details about freshness of Evidence see
 Section 9.

 If any format other than EAT is used, it is up to that format to
 define the use of the challenge field.

 versions
 The versions parameter enumerates the TEEP protocol version(s)
 supported by the TAM. A value of 0 refers to the current version
 of the TEEP protocol. If this field is not present, it is to be
 treated the same as if it contained only version 0.

 attestation-payload-format
 The attestation-payload-format parameter indicates the IANA Media
 Type of the attestation-payload parameter, where media type
 parameters are permitted after the media type. For protocol
 version 0, the absence of this parameter indicates that the format
 is "application/eat+cwt; eat_profile=urn:ietf:rfc:rfcXXXX" (see
 [I-D.ietf-rats-eat-media-type] for further discussion). (RFC-
 editor: upon RFC publication, replace XXXX above with the RFC
 number of this document.) It MUST be present if the attestation-
 payload parameter is present and the format is not an EAT in CWT
 format with the profile defined below in Section 5.

 attestation-payload
 The attestation-payload parameter contains Evidence or an
 Attestation Result for the TEEP Agent to use to perform
 attestation of the TAM. If the attestation-payload-format
 parameter is absent, the attestation payload contained in this
 parameter MUST be an Entity Attestation Token following the
 encoding defined in [I-D.ietf-rats-eat]. See Section 4.3.1 for
 further discussion.

 suit-reports
 If present, the suit-reports parameter contains a set of "boot"
 (including starting an executable in an OS context) time SUIT
 Reports of the TAM as defined by SUIT_Report in Section 4 of
 [I-D.ietf-suit-report], encoded using COSE as discussed in
 Section 8.2. SUIT Reports can be useful in QueryRequest messages

Tschofenig, et al. Expires 9 May 2024 [Page 11]

Internet-Draft TEEP Protocol November 2023

 to pass additional information about the TAM to the TEEP Agent
 without depending on a Verifier including the relevant information
 in the TAM’s Attestation Results.

4.3. QueryResponse Message

 The QueryResponse message is the successful response by the TEEP
 Agent after receiving a QueryRequest message. As discussed in
 Section 7.2, it can also be sent unsolicited if the contents of the
 QueryRequest are already known and do not vary per message.

 Like other TEEP messages, the QueryResponse message is signed, and
 the relevant CDDL snippet is shown below. The complete CDDL
 structure is shown in Appendix C.

 query-response = [
 type: TEEP-TYPE-query-response,
 options: {
 ? token => bstr .size (8..64),
 ? selected-version => version,
 ? attestation-payload-format => text,
 ? attestation-payload => bstr,
 ? suit-reports => [+ bstr],
 ? tc-list => [+ system-property-claims],
 ? requested-tc-list => [+ requested-tc-info],
 ? unneeded-manifest-list => [+ SUIT_Component_Identifier],
 ? ext-list => [+ ext-info],
 * $$query-response-extensions,
 * $$teep-option-extensions
 }
]

 requested-tc-info = {
 component-id => SUIT_Component_Identifier,
 ? tc-manifest-sequence-number => uint .size 8,
 ? have-binary => bool
 }

 The QueryResponse message has the following fields:

 type
 The value of (2) corresponds to a QueryResponse message sent from
 the TEEP Agent to the TAM.

 token

Tschofenig, et al. Expires 9 May 2024 [Page 12]

Internet-Draft TEEP Protocol November 2023

 The value in the token parameter is used to match responses to
 requests. The value MUST correspond to the value received with
 the QueryRequest message if one was present, and MUST be absent if
 no token was present in the QueryRequest.

 selected-version
 The selected-version parameter indicates the TEEP protocol version
 selected by the TEEP Agent. The absence of this parameter
 indicates the same as if it was present with a value of 0.

 attestation-payload-format
 The attestation-payload-format parameter indicates the IANA Media
 Type of the attestation-payload parameter, where media type
 parameters are permitted after the media type. For protocol
 version 0, the absence of this parameter indicates that the format
 is "application/eat+cwt; eat_profile=urn:ietf:rfc:rfcXXXX" (see
 [I-D.ietf-rats-eat-media-type] for further discussion). (RFC-
 editor: upon RFC publication, replace XXXX above with the RFC
 number of this document.) It MUST be present if the attestation-
 payload parameter is present and the format is not an EAT in CWT
 format with the profile defined below in Section 5.

 attestation-payload
 The attestation-payload parameter contains Evidence or an
 Attestation Result. This parameter MUST be present if the
 QueryResponse is sent in response to a QueryRequest with the
 attestation bit set. If the attestation-payload-format parameter
 is absent, the attestation payload contained in this parameter
 MUST be an Entity Attestation Token following the encoding defined
 in [I-D.ietf-rats-eat]. See Section 4.3.1 for further discussion.

 suit-reports
 If present, the suit-reports parameter contains a set of "boot"
 (including starting an executable in an OS context) time SUIT
 Reports as defined by SUIT_Report in Section 4 of
 [I-D.ietf-suit-report], encoded using COSE as discussed in
 Section 8.2. If a token parameter was present in the QueryRequest
 message the QueryResponse message is in response to, the suit-
 report-nonce field MUST be present in the SUIT Report with a value
 matching the token parameter in the QueryRequest message. SUIT
 Reports can be useful in QueryResponse messages to pass
 information to the TAM without depending on a Verifier including
 the relevant information in Attestation Results.

 tc-list
 The tc-list parameter enumerates the Trusted Components installed
 on the device in the form of system-property-claims objects, as
 defined in Section 4 of [I-D.ietf-suit-report]. The system-

Tschofenig, et al. Expires 9 May 2024 [Page 13]

Internet-Draft TEEP Protocol November 2023

 property-claims can be used to learn device identifying
 information and TEE identifying information for distinguishing
 which Trusted Components to install in the TEE. This parameter
 MUST be present if the QueryResponse is sent in response to a
 QueryRequest with the trusted-components bit set.

 requested-tc-list
 The requested-tc-list parameter enumerates the Trusted Components
 that are not currently installed in the TEE, but which are
 requested to be installed, for example by an installer of an
 Untrusted Application that has a TA as a dependency, or by a
 Trusted Application that has another Trusted Component as a
 dependency. Requested Trusted Components are expressed in the
 form of requested-tc-info objects. A TEEP Agent can get this
 information from the RequestTA conceptual API defined in [RFC9397]
 section 6.2.1.

 unneeded-manifest-list
 The unneeded-manifest-list parameter enumerates the SUIT manifests
 whose components are currently installed in the TEE, but which are
 no longer needed by any other application. The TAM can use this
 information in determining whether a SUIT manifest can be
 unlinked. Each unneeded SUIT manifest is identified by its SUIT
 Manifest Component ID (note that this is the Component ID for the
 manifest itself, which is different from the Component ID of a
 component installed by the manifest, see
 [I-D.ietf-suit-trust-domains] for more discussion). A TEEP Agent
 can get this information from the UnrequestTA conceptual API
 defined in [RFC9397] section 6.2.1.

 ext-list
 The ext-list parameter lists the supported extensions. This
 document does not define any extensions. This parameter MUST be
 present if the QueryResponse is sent in response to a QueryRequest
 with the extensions bit set.

 The requested-tc-info message has the following fields:

 component-id
 A SUIT Component Identifier.

 tc-manifest-sequence-number
 The minimum suit-manifest-sequence-number value from a SUIT
 manifest for the Trusted Component. If not present, indicates
 that any sequence number will do.

 have-binary

Tschofenig, et al. Expires 9 May 2024 [Page 14]

Internet-Draft TEEP Protocol November 2023

 If present with a value of true, indicates that the TEEP Agent
 already has the Trusted Component binary and only needs an Update
 message with a SUIT manifest that authorizes installing it. If
 have-binary is true, the tc-manifest-sequence-number field MUST be
 present.

4.3.1. Evidence and Attestation Results

 Section 7 of [RFC9397] lists information that may appear in Evidence
 depending on the circumstance. However, the Evidence is opaque to
 the TEEP protocol and there are no formal requirements on the
 contents of Evidence.

 TAMs however consume Attestation Results and do need enough
 information therein to make decisions on how to remediate a TEE that
 is out of compliance, or update a TEE that is requesting an
 authorized change. To do so, the information in Section 7 of
 [RFC9397] is often required depending on the policy.

 Attestation Results SHOULD use Entity Attestation Tokens (EATs). Use
 of any other format, such as a widely implemented format for a
 specific processor vendor, is permitted but increases the complexity
 of the TAM by requiring it to understand the format for each such
 format rather than only the common EAT format so is not recommended.

 When an EAT is used, the following claims can be used to meet those
 requirements, whether these claims appear in Attestation Results, or
 in Evidence for the Verifier to use when generating Attestation
 Results of some form:

Tschofenig, et al. Expires 9 May 2024 [Page 15]

Internet-Draft TEEP Protocol November 2023

 +=================+===========+====================================+
 | Requirement | Claim | Reference |
 +=================+===========+====================================+
 | Freshness proof | nonce | Section 4.1 of [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | Device unique | ueid | Section 4.2.1 of |
 | identifier | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | Vendor of the | oemid | Section 4.2.3 of |
 | device | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | Class of the | hwmodel | Section 4.2.4 of |
 | device | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | TEE hardware | hwversion | Section 4.2.5 of |
 | type | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | TEE hardware | hwversion | Section 4.2.5 of |
 | version | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | TEE firmware | manifests | Section 4.2.15 of |
 | type | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+
 | TEE firmware | manifests | Section 4.2.15 of |
 | version | | [I-D.ietf-rats-eat] |
 +-----------------+-----------+------------------------------------+

 Table 1

 The "manifests" claim (see Section 4.2.15 of [I-D.ietf-rats-eat])
 should include information about the TEEP Agent as well as any of its
 dependencies such as firmware.

4.4. Update Message

 The Update message is used by the TAM to install and/or delete one or
 more Trusted Components via the TEEP Agent. It can also be used to
 pass a successful Attestation Report back to the TEEP Agent when the
 TAM is configured as an intermediary between the TEEP Agent and a
 Verifier, as shown in the figure below, where the Attestation Result
 passed back to the Attester can be used as a so-called "passport"
 (see section 5.1 of [RFC9334]) that can be presented to other Relying
 Parties.

Tschofenig, et al. Expires 9 May 2024 [Page 16]

Internet-Draft TEEP Protocol November 2023

 +---------------+
 | Verifier |
 +---------------+
 ^ | Attestation
 Evidence | v Result
 +---------------+
 | TAM / |
 | Relying Party |
 +---------------+
 QueryResponse ^ | Update
 (Evidence) | | (Attestation
 | v Result)
 +---------------+ +---------------+
 | TEEP Agent |------------>| Other |
 | / Attester | Attestation | Relying Party |
 +---------------+ Result +---------------+

 Figure 1: Example use of TEEP and attestation

 Like other TEEP messages, the Update message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 update = [
 type: TEEP-TYPE-update,
 options: {
 ? token => bstr .size (8..64),
 ? unneeded-manifest-list => [+ SUIT_Component_Identifier],
 ? manifest-list => [+ bstr .cbor SUIT_Envelope],
 ? attestation-payload-format => text,
 ? attestation-payload => bstr,
 ? err-code => (0..23),
 ? err-msg => text .size (1..128),
 * $$update-extensions,
 * $$teep-option-extensions
 }
]

 The Update message has the following fields:

 type
 The value of (3) corresponds to an Update message sent from the
 TAM to the TEEP Agent. In case of successful processing, a
 Success message is returned by the TEEP Agent. In case of an
 error, an Error message is returned. Note that the Update message
 is used for initial Trusted Component installation as well as for
 updates and deletes.

Tschofenig, et al. Expires 9 May 2024 [Page 17]

Internet-Draft TEEP Protocol November 2023

 token
 The value in the token field is used to match responses to
 requests.

 unneeded-manifest-list
 The unneeded-manifest-list parameter enumerates the SUIT manifests
 to be unlinked. Each unneeded SUIT manifest is identified by its
 SUIT Manifest Component ID. The SUIT manifest processor MAY
 execute uninstall section in the manifest. See Section 7 of
 [I-D.ietf-suit-trust-domains] for more information about the suit-
 uninstall Command Sequence.

 manifest-list
 The manifest-list field is used to convey one or multiple SUIT
 manifests to install. A manifest is a bundle of metadata about a
 Trusted Component, such as where to find the code, the devices to
 which it applies, and cryptographic information protecting the
 manifest. The manifest may also convey personalization data.
 Trusted Component binaries and personalization data can be signed
 and encrypted by the same Trusted Component Signer. Other
 combinations are, however, possible as well. For example, it is
 also possible for the TAM to sign and encrypt the personalization
 data and to let the Trusted Component Developer sign and/or
 encrypt the Trusted Component binary.

 attestation-payload-format
 The attestation-payload-format parameter indicates the IANA Media
 Type of the attestation-payload parameter, where media type
 parameters are permitted after the media type. The absence of
 this parameter indicates that the format is "application/eat+cwt;
 eat_profile=urn:ietf:rfc:rfcXXXX" (see
 [I-D.ietf-rats-eat-media-type] for further discussion). (RFC-
 editor: upon RFC publication, replace XXXX above with the RFC
 number of this document.) It MUST be present if the attestation-
 payload parameter is present and the format is not an EAT in CWT
 format with the profile defined below in Section 5.

 attestation-payload
 The attestation-payload parameter contains an Attestation Result.
 This parameter If the attestation-payload-format parameter is
 absent, the attestation payload contained in this parameter MUST
 be an Entity Attestation Token following the encoding defined in
 [I-D.ietf-rats-eat]. See Section 4.3.1 for further discussion.

 err-code
 The err-code parameter contains one of the error codes listed in
 the Section 4.6, which describes the reasons for the error when
 performing QueryResponse in the TAM.

Tschofenig, et al. Expires 9 May 2024 [Page 18]

Internet-Draft TEEP Protocol November 2023

 err-msg
 The err-msg parameter is human-readable diagnostic text that MUST
 be encoded using UTF-8 [RFC3629] in Net-Unicode format [RFC5198]
 with a maximum of 128 bytes.

 Note that an Update message carrying one or more SUIT manifests will
 inherently involve multiple signatures, one by the TAM in the TEEP
 message and one from a Trusted Component Signer inside each manifest.
 This is intentional as they are for different purposes.

 The TAM is what authorizes apps to be installed, updated, and deleted
 on a given TEE and so the TEEP signature is checked by the TEEP Agent
 at protocol message processing time. (This same TEEP security
 wrapper is also used on messages like QueryRequest so that Agents
 only send potentially sensitive data such as Evidence to trusted
 TAMs.)

 The Trusted Component signer on the other hand is what authorizes the
 Trusted Component to actually run, so the manifest signature could be
 checked at install time or load (or run) time or both, and this
 checking is done by the TEE independent of whether TEEP is used or
 some other update mechanism. See section 5 of [RFC9397] for further
 discussion.

 The Update Message has a SUIT_Envelope containing SUIT manifests.
 Following are some example scenarios using SUIT manifests in the
 Update Message.

4.4.1. Scenario 1: Having one SUIT Manifest pointing to a URI of a
 Trusted Component Binary

 In this scenario, a SUIT Manifest has a URI pointing to a Trusted
 Component Binary.

 A Trusted Component Developer creates a new Trusted Component Binary
 and hosts it at a Trusted Component Developer’s URI. Then the
 Trusted Component Developer generates an associated SUIT manifest
 with the filename "tc-uuid" that contains the URI. The filename "tc-
 uuid" is used in Scenario 3 later.

 The TAM receives the latest SUIT manifest from the Trusted Component
 Developer, and the URI it contains will not be changeable by the TAM
 since the SUIT manifest is signed by the Trusted Component Developer.

 Pros:

 * The Trusted Component Developer can ensure that the intact Trusted
 Component Binary is downloaded by devices

Tschofenig, et al. Expires 9 May 2024 [Page 19]

Internet-Draft TEEP Protocol November 2023

 * The TAM does not have to send large Update messages containing the
 Trusted Component Binary

 Cons:

 * The Trusted Component Developer must host the Trusted Component
 Binary server

 * The device must fetch the Trusted Component Binary in another
 connection after receiving an Update message

 * A device’s IP address and therefore location may be revealed to
 the Trusted Component Binary server

Tschofenig, et al. Expires 9 May 2024 [Page 20]

Internet-Draft TEEP Protocol November 2023

 +------------+ +-------------+
 | TAM | | TEEP Agent |
 +------------+ +-------------+

 Update ---->

 +=================== teep-protocol(TAM) ==================+
 | TEEP_Message([|
 | TEEP-TYPE-update, |
 | options: { |
 | manifest-list: [|
 | += suit-manifest "tc-uuid" (TC Developer) ======+ |
 | | SUIT_Envelope({ | |
 | | manifest: { | |
 | | install: { | |
 | | override-parameters: { | |
 | | uri: "https://example.org/tc-uuid.ta" | |
 | | }, | |
 | | fetch | |
 | | } | |
 | | } | |
 | | }) | |
 | +===+ |
 |] |
 | } |
 |]) |
 +===+

 and then,

 +-------------+ +--------------+
 | TEEP Agent | | TC Developer |
 +-------------+ +--------------+

 <----

 fetch "https://example.org/tc-uuid.ta"

 +======= tc-uuid.ta =======+
 | 48 65 6C 6C 6F 2C 20 ... |
 +==========================+

 Figure 2: URI of the Trusted Component Binary

 For the full SUIT Manifest example binary, see Appendix "Example 1:
 SUIT Manifest pointing to URI of the Trusted Component Binary".

Tschofenig, et al. Expires 9 May 2024 [Page 21]

Internet-Draft TEEP Protocol November 2023

4.4.2. Scenario 2: Having a SUIT Manifest include the Trusted Component
 Binary

 In this scenario, the SUIT manifest contains the entire Trusted
 Component Binary as an integrated payload (see
 [I-D.ietf-suit-manifest] Section 7.5).

 A Trusted Component Developer delegates the task of delivering the
 Trusted Component Binary to the TAM inside the SUIT manifest. The
 Trusted Component Developer creates a SUIT manifest and embeds the
 Trusted Component Binary, which is referenced in the suit-integrated-
 payload element containing the fragment-only reference "#tc", in the
 envelope. The Trusted Component Developer transmits the entire
 bundle to the TAM.

 The TAM serves the SUIT manifest containing the Trusted Component
 Binary to the device in an Update message.

 Pros:

 * The device can obtain the Trusted Component Binary and the SUIT
 manifest in one Update message.

 * The Trusted Component Developer does not have to host a server to
 deliver the Trusted Component Binary to devices.

 Cons:

 * The TAM must host the Trusted Component Binary rather than
 delegating storage to the Trusted Component Developer.

 * The TAM must deliver Trusted Component Binaries in Update
 messages, which increases the size of the Update message.

Tschofenig, et al. Expires 9 May 2024 [Page 22]

Internet-Draft TEEP Protocol November 2023

 +------------+ +-------------+
 | TAM | | TEEP Agent |
 +------------+ +-------------+

 Update ---->

 +=========== teep-protocol(TAM) ============+
 | TEEP_Message([|
 | TEEP-TYPE-update, |
 | options: { |
 | manifest-list: [|
 | +== suit-manifest(TC Developer) ==+ |
 | | SUIT_Envelope({ | |
 | | manifest: { | |
 | | install: { | |
 | | override-parameters: { | |
 | | uri: "#tc" | |
 | | }, | |
 | | fetch | |
 | | } | |
 | | }, | |
 | | "#tc": h’48 65 6C 6C ...’ | |
 | | }) | |
 | +=================================+ |
 |] |
 | } |
 |]) |
 +===+

 Figure 3: Integrated Payload with Trusted Component Binary

 For the full SUIT Manifest example binary, see Appendix "Example 2:
 SUIT Manifest including the Trusted Component Binary".

4.4.3. Scenario 3: Supplying Personalization Data for the Trusted
 Component Binary

 In this scenario, Personalization Data is associated with the Trusted
 Component Binary "tc-uuid" from Scenario 1.

 The Trusted Component Developer places encrypted Personalization Data
 in the SUIT manifest, and it will be delivered by the TAM. The SUIT
 manifest processor decrypts it and then store it into file named
 "config.json", and then install the dependency component.

 The TAM delivers the SUIT manifest of the Personalization Data which
 depends on the Trusted Component Binary from Scenario 1.

Tschofenig, et al. Expires 9 May 2024 [Page 23]

Internet-Draft TEEP Protocol November 2023

 +------------+ +-------------+
 | TAM | | TEEP Agent |
 +------------+ +-------------+

 Update ---->

 +================== teep-protocol(TAM) ======================+
 | TEEP_Message([|
 | TEEP-TYPE-update, |
 | options: { |
 | manifest-list: [|
 | +========= suit-manifest(TC Developer) ============+ |
 | | SUIT_Envelope({ | |
 | | manifest: { | |
 | | common: { | |
 | | dependencies: { | |
 | | dependency-prefix 1: { | |
 | | [tc-uuid, ’suit’] | |
 | | } | |
 | | } | |
 | | components: [| |
 | | [’config.json’] | |
 | |] | |
 | | }, | |
 | | dependency-resolution: { | |
 | | override-parameters: { | |
 | | uri: "https://example.org/tc-uuid" | |
 | | }, | |
 | | fetch | |
 | | }, | |
 | | install: { | |
 | | set-component-index 0, | |
 | | override-parameters: { | |
 | | content: h’48FE0794...’ | |
 | | encryption-info: << ... >> | |
 | | }, | |
 | | write, | |
 | | set-component-index 1, | |
 | | process-dependency | |
 | | } | |
 | | } | |
 | | }) | |
 | +==+ |
 |] |
 | } |
 |]) |
 +==+

Tschofenig, et al. Expires 9 May 2024 [Page 24]

Internet-Draft TEEP Protocol November 2023

 Figure 4: Encrypted Personalization Data

 For the full SUIT Manifest example binary, see Appendix "Example 3:
 Supplying Personalization Data for Trusted Component Binary".

4.5. Success Message

 The Success message is used by the TEEP Agent to return a success in
 response to an Update message.

 Like other TEEP messages, the Success message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 teep-success = [
 type: TEEP-TYPE-teep-success,
 options: {
 ? token => bstr .size (8..64),
 ? msg => text .size (1..128),
 ? suit-reports => [+ SUIT_Report],
 * $$teep-success-extensions,
 * $$teep-option-extensions
 }
]

 The Success message has the following fields:

 type
 The value of (5) corresponds to corresponds to a Success message
 sent from the TEEP Agent to the TAM.

 token
 The value in the token parameter is used to match responses to
 requests. It MUST match the value of the token parameter in the
 Update message the Success is in response to, if one was present.
 If none was present, the token MUST be absent in the Success
 message.

 msg
 The msg parameter contains optional diagnostics information
 encoded in UTF-8 [RFC3629] using Net-Unicode form [RFC5198] with
 max 128 bytes returned by the TEEP Agent.

 suit-reports

Tschofenig, et al. Expires 9 May 2024 [Page 25]

Internet-Draft TEEP Protocol November 2023

 If present, the suit-reports parameter contains a set of SUIT
 Reports as defined in Section 4 of [I-D.ietf-suit-report]. If a
 token parameter was present in the Update message the Success
 message is in response to, the suit-report-nonce field MUST be
 present in the SUIT Report with a value matching the token
 parameter in the Update message.

4.6. Error Message

 The Error message is used by the TEEP Agent to return an error in
 response to a message from the TAM.

 Like other TEEP messages, the Error message is signed, and the
 relevant CDDL snippet is shown below. The complete CDDL structure is
 shown in Appendix C.

 teep-error = [
 type: TEEP-TYPE-teep-error,
 options: {
 ? token => bstr .size (8..64),
 ? err-msg => text .size (1..128),
 ? supported-teep-cipher-suites => [+ $teep-cipher-suite],
 ? supported-freshness-mechanisms => [+ $freshness-mechanism],
 ? supported-suit-cose-profiles => [+ $suit-cose-profile],
 ? challenge => bstr .size (8..512),
 ? versions => [+ version],
 ? suit-reports => [+ SUIT_Report],
 * $$teep-error-extensions,
 * $$teep-option-extensions
 },
 err-code: (0..23)
]

 ; The err-code parameter, uint (0..23)
 ERR_PERMANENT_ERROR = 1
 ERR_UNSUPPORTED_EXTENSION = 2
 ERR_UNSUPPORTED_FRESHNESS_MECHANISMS = 3
 ERR_UNSUPPORTED_MSG_VERSION = 4
 ERR_UNSUPPORTED_CIPHER_SUITES = 5
 ERR_BAD_CERTIFICATE = 6
 ERR_ATTESTATION_REQUIRED = 7
 ERR_UNSUPPORTED_SUIT_REPORT = 8
 ERR_CERTIFICATE_EXPIRED = 9
 ERR_TEMPORARY_ERROR = 10
 ERR_MANIFEST_PROCESSING_FAILED = 17

 The Error message has the following fields:

Tschofenig, et al. Expires 9 May 2024 [Page 26]

Internet-Draft TEEP Protocol November 2023

 type
 The value of (6) corresponds to an Error message sent from the
 TEEP Agent to the TAM.

 token
 The value in the token parameter is used to match responses to
 requests. It MUST match the value of the token parameter in the
 message the Success is in response to, if one was present. If
 none was present, the token MUST be absent in the Error message.

 err-msg
 The err-msg parameter is human-readable diagnostic text that MUST
 be encoded using UTF-8 [RFC3629] using Net-Unicode form [RFC5198]
 with max 128 bytes.

 supported-teep-cipher-suites
 The supported-teep-cipher-suites parameter lists the TEEP cipher
 suite(s) supported by the TEEP Agent. Details about the cipher
 suite encoding can be found in Section 8.1. This otherwise
 optional parameter MUST be returned if err-code is
 ERR_UNSUPPORTED_CIPHER_SUITES.

 supported-freshness-mechanisms
 The supported-freshness-mechanisms parameter lists the freshness
 mechanism(s) supported by the TEEP Agent. Details about the
 encoding can be found in Section 9. This otherwise optional
 parameter MUST be returned if err-code is
 ERR_UNSUPPORTED_FRESHNESS_MECHANISMS.

 supported-suit-cose-profiles
 The supported-suit-cose-profiles parameter lists the SUIT profiles
 supported by the TEEP Agent. Details about the cipher suite
 encoding can be found in Section 8.2. This otherwise optional
 parameter MUST be returned if err-code is
 ERR_UNSUPPORTED_SUIT_REPORT.

 challenge
 The challenge field is an optional parameter used for ensuring the
 freshness of attestation Evidence included with a QueryRequest
 message. When a challenge is provided in the Error message and
 Evidence in the form of an EAT is returned with a QueryRequest
 message then the challenge contained in the Error message MUST be
 used to generate the EAT, by copying the challenge value into the
 eat_nonce claim, as described in the EAT profile Section 5, if the
 nonce-based freshness mechanism is used. For more details see
 Section 9.

Tschofenig, et al. Expires 9 May 2024 [Page 27]

Internet-Draft TEEP Protocol November 2023

 If any format other than EAT is used, it is up to that format to
 define the use of the challenge field.

 versions
 The versions parameter enumerates the TEEP protocol version(s)
 supported by the TEEP Agent. This otherwise optional parameter
 MUST be returned if err-code is ERR_UNSUPPORTED_MSG_VERSION.

 suit-reports
 If present, the suit-reports parameter contains a set of SUIT
 Reports as defined in Section 4 of [I-D.ietf-suit-report]. If a
 token parameter was present in the Update message the Error
 message is in response to, the suit-report-nonce field MUST be
 present in the SUIT Report with a value matching the token
 parameter in the Update message.

 err-code
 The err-code parameter contains one of the error codes listed
 below). Only selected values are applicable to each message.

 This specification defines the following initial error messages:

 ERR_PERMANENT_ERROR (1)
 The received TEEP message contained incorrect fields or fields
 that are inconsistent with other fields. For diagnosis purposes
 it is RECOMMMENDED to identify the failure reason in the error
 message field. A TEEP implementation receiving this error might
 refuse to communicate further with the problematic TEEP message
 sender, by silently dropping any TEEP messages received, for some
 period of time until it has reason to believe it is worth trying
 again, but it should take care not to give up on communication.
 In contrast, ERR_TEMPORARY_ERROR is an indication that a more
 aggressive retry is warranted.

 ERR_UNSUPPORTED_EXTENSION (2)
 The TEEP implementation does not support an extension included in
 the TEEP message it received. For diagnosis purposes it is
 RECOMMMENDED to identify the unsupported extension in the error
 message field. A TAM implementation receiving this error might
 retry sending the last message it sent to the sender of this
 error, without using any TEEP extensions.

 ERR_UNSUPPORTED_FRESHNESS_MECHANISMS (3)
 The TEEP Agent does not support any freshness algorithm mechanisms
 in the request message. A TAM receiving this error might retry
 the request using a different set of supported freshness
 mechanisms in the request message.

Tschofenig, et al. Expires 9 May 2024 [Page 28]

Internet-Draft TEEP Protocol November 2023

 ERR_UNSUPPORTED_MSG_VERSION (4)
 The TEEP implementation does not support the TEEP protocol version
 indicated in the received message. A TAM receiving this error
 might retry the request using a different TEEP protocol version.

 ERR_UNSUPPORTED_CIPHER_SUITES (5)
 The TEEP Agent does not support any cipher suites indicated in the
 request message. A TAM receiving this error might retry the
 request using a different set of supported cipher suites in the
 request message.

 ERR_BAD_CERTIFICATE (6)
 Processing of a certificate failed. For diagnosis purposes it is
 RECOMMMENDED to include information about the failing certificate
 in the error message field. For example, the certificate was of
 an unsupported type, or the certificate was revoked by its signer.
 A TEEP implementation receiving this error might attempt to use an
 alternate certificate.

 ERR_ATTESTATION_REQUIRED (7)
 Indicates that the TEEP implementation sending this error requires
 attestation of the TEEP imlementation receiving this error.

 ERR_UNSUPPORTED_SUIT_REPORT (8)
 Indicates that the TEEP Agent does not support the suit-cose-
 profile of the SUIT Reports which was sent by the TAM. The TEEP
 Agent must report the error code ERR_UNSUPPORTED_SUIT_REPORT
 supplying the supported-suit-cose-profiles.

 ERR_CERTIFICATE_EXPIRED (9)
 A certificate has expired or is not currently valid. A TEEP
 implementation receiving this error might attempt to renew its
 certificate before using it again.

 ERR_TEMPORARY_ERROR (10)
 A miscellaneous temporary error, such as a memory allocation
 failure, occurred while processing the TEEP message. A TEEP
 implementation receiving this error might retry the last message
 it sent to the sender of this error at some later point, which is
 up to the implementation.

 ERR_MANIFEST_PROCESSING_FAILED (17)
 The TEEP Agent encountered one or more manifest processing
 failures. If the suit-reports parameter is present, it contains
 the failure details. A TAM receiving this error might still
 attempt to install or update other components that do not depend
 on the failed manifest.

Tschofenig, et al. Expires 9 May 2024 [Page 29]

Internet-Draft TEEP Protocol November 2023

 New error codes should be added sparingly, not for every
 implementation error. That is the intent of the err-msg field, which
 can be used to provide details meaningful to humans. New error codes
 should only be added if the TAM is expected to do something
 behaviorally different upon receipt of the error message, rather than
 just logging the event. Hence, each error code is responsible for
 saying what the behavioral difference is expected to be.

5. EAT Profile

 The TEEP protocol operates between a TEEP Agent and a TAM. While the
 TEEP protocol does not require use of EAT, use of EAT is encouraged
 and Section 4.3 explicitly defines a way to carry an Entity
 Attestation Token in a QueryResponse.

 As discussed in Section 4.3.1, the content of Evidence is opaque to
 the TEEP architecture, but the content of Attestation Results is not,
 where Attestation Results flow between a Verifier and a TAM (as the
 Relying Party). Although Attestation Results required by a TAM are
 separable from the TEEP protocol per se, this section is included as
 part of the requirements for building a compliant TAM that uses EATs
 for Attestation Results.

 Section 7 of [I-D.ietf-rats-eat] defines the requirement for Entity
 Attestation Token profiles. This section defines an EAT profile for
 use with TEEP.

 * profile-label: The profile-label for this specification is the URI

 <urn:ietf:rfc:rfcXXXX>. (RFC-editor: upon RFC publication, replace
 XXXX with the RFC number of this document.)

 * Use of JSON, CBOR, or both: CBOR only.

 * CBOR Map and Array Encoding: Only definite length arrays and maps.

 * CBOR String Encoding: Only definite-length strings are allowed.

 * CBOR Preferred Serialization: Encoders must use preferred
 serialization, and decoders need not accept non-preferred
 serialization.

 * CBOR Tags: CBOR Tags are not used.

 * COSE/JOSE Protection: See Section 8.2.

 * COSE/JOSE Algorithms: See Section 8.2.

Tschofenig, et al. Expires 9 May 2024 [Page 30]

Internet-Draft TEEP Protocol November 2023

 * Detached EAT Bundle Support: DEB use is permitted.

 * Key Identification: COSE Key ID (kid) is used, where the key ID is
 the hash of a public key (where the public key may be used as a
 raw public key, or in a certificate) as specified in
 [I-D.ietf-cose-key-thumbprint]. See Section 7.1.1.1 and
 Section 7.2.1.1 for discussion on the choice of hash algorithm.

 * Endorsement Identification: Optional, but semantics are the same
 as in Verification Key Identification.

 * Freshness: See Section 9 for details. When the eat_nonce claim is
 used, the value is a single bstr.

 * Claims Requirements:

 - The following claims are required: ueid, oemid, hwmodel,
 hwversion, manifests, and cnf. See Section 4.3.1 for
 discussion. Other claims are optional.

 - See Section 9 for discussion affecting whether the eat_nonce
 claim is used.

 - The sw-name claim for a Trusted Component holds the URI of the
 SUIT manifest for that component.

 - The manifests claim uses a SUIT manifest, where the manifest
 body contains a SUIT_Reference as defined in Section 4 of
 [I-D.ietf-suit-report], and the content type is as defined in
 [I-D.ietf-suit-report].

 A TAM implementation might simply accept a TEEP Agent as trustworthy
 based on a successful Attestation Result, and if not then attempt to
 update the TEEP Agent and all of its dependencies. This logic is
 simple but it might result in updating some components that do not
 need to be updated.

 An alternate TAM implementation might use any Additional Claims to
 determine whether the TEEP Agent or any of its dependencies are
 trustworthy, and only update the specific components that are out of
 date.

5.1. Relationship to AR4SI

 [I-D.ietf-rats-ar4si] defines an EAT profile for arbitrary Relying
 Parties to use with Attestation Results. However the TAM as a
 Relying Party needs specific claims that are not required in the
 AR4SI profile, and so needs its own more specific profile.

Tschofenig, et al. Expires 9 May 2024 [Page 31]

Internet-Draft TEEP Protocol November 2023

 In some deployments, a TAM can be used as an intermediary between
 Verifier and a TEEP Agent acting as an Attester in the Passport model
 or acting as a Relying Party in the Background Check Model of
 [RFC9334]. This is depicted in the example in Figure 1. In such a
 case, both profiles need to be obtained from the Verifier: one for
 use by the TAM itself, and the other to pass on to the TEEP Agent.

 When the TAM and Verifier are combined into the same implementation,
 obtaining both profiles can be straightforward, but when they are on
 different machines, the situation is more complex, especially if
 Nonces are used to ensure freshness of Evidence. There are thus
 several such cases:

 1. The protocol between the TAM and the Verifier (which is outside
 the scope of TEEP itself) allows requesting multiple Attestation
 Results from the same Evidence. In this case, the TAM can
 request both EAT profiles be returned.

 2. The protocol between the TAM and the Verifier only allows
 requesting one Attestation Result format, but the Evidence
 freshness mechanism does not use Nonces. In this case, the TAM
 can send the same Evidence in two separate requests, each
 requesting a different EAT profile for the Attestation Results.

 3. The protocol between the TAM and the Verifier only allows
 requesting one Attestation Result format, and the Evidence
 freshness mechanism uses Nonces. In this case, it is simpler to
 not have the TAM be an intermediary, since the Verifier will
 require a separate Nonce for each Attestation Result, but have
 the Attester or Relying Party contact the Verifier directly to
 get Attestation Results in the AR4SI profile.

6. Mapping of TEEP Message Parameters to CBOR Labels

 In COSE, arrays and maps use strings, negative integers, and unsigned
 integers as their keys. Integers are used for compactness of
 encoding. Since the word "key" is mainly used in its other meaning,
 as a cryptographic key, this specification uses the term "label" for
 this usage as a map key.

 This specification uses the following mapping:

Tschofenig, et al. Expires 9 May 2024 [Page 32]

Internet-Draft TEEP Protocol November 2023

 +================================+=======+
 | Name | Label |
 +================================+=======+
 | supported-teep-cipher-suites | 1 |
 +--------------------------------+-------+
 | challenge | 2 |
 +--------------------------------+-------+
 | versions | 3 |
 +--------------------------------+-------+
 | supported-suit-cose-profiles | 4 |
 +--------------------------------+-------+
 | selected-version | 6 |
 +--------------------------------+-------+
 | attestation-payload | 7 |
 +--------------------------------+-------+
 | tc-list | 8 |
 +--------------------------------+-------+
 | ext-list | 9 |
 +--------------------------------+-------+
 | manifest-list | 10 |
 +--------------------------------+-------+
 | msg | 11 |
 +--------------------------------+-------+
 | err-msg | 12 |
 +--------------------------------+-------+
 | attestation-payload-format | 13 |
 +--------------------------------+-------+
 | requested-tc-list | 14 |
 +--------------------------------+-------+
 | unneeded-manifest-list | 15 |
 +--------------------------------+-------+
 | component-id | 16 |
 +--------------------------------+-------+
 | tc-manifest-sequence-number | 17 |
 +--------------------------------+-------+
 | have-binary | 18 |
 +--------------------------------+-------+
 | suit-reports | 19 |
 +--------------------------------+-------+
 | token | 20 |
 +--------------------------------+-------+
 | supported-freshness-mechanisms | 21 |
 +--------------------------------+-------+
 | err-code | 23 |
 +--------------------------------+-------+

 Table 2

Tschofenig, et al. Expires 9 May 2024 [Page 33]

Internet-Draft TEEP Protocol November 2023

 ; labels of mapkey for teep message parameters, uint (0..23)
 supported-teep-cipher-suites = 1
 challenge = 2
 versions = 3
 supported-suit-cose-profiles = 4
 selected-version = 6
 attestation-payload = 7
 tc-list = 8
 ext-list = 9
 manifest-list = 10
 msg = 11
 err-msg = 12
 attestation-payload-format = 13
 requested-tc-list = 14
 unneeded-manifest-list = 15
 component-id = 16
 tc-manifest-sequence-number = 17
 have-binary = 18
 suit-reports = 19
 token = 20
 supported-freshness-mechanisms = 21
 err-code = 23

7. Behavior Specification

 Behavior is specified in terms of the conceptual APIs defined in
 section 6.2.1 of [RFC9397].

7.1. TAM Behavior

 When the ProcessConnect API is invoked, the TAM sends a QueryRequest
 message.

 When the ProcessTeepMessage API is invoked, the TAM first does
 validation as specified in Section 4.1.2, and drops the message if it
 is not valid. It may also do additional implementation specific
 actions such as logging the results or attempting to update the TEEP
 Agent to a version that does not send invalid messages. Otherwise,
 it proceeds as follows.

 If the message includes a token, it can be used to match the response
 to a request previously sent by the TAM. The TAM MUST expire the
 token value after receiving the first response from the device that
 has a valid signature and ignore any subsequent messages that have
 the same token value. The token value MUST NOT be used for other
 purposes, such as a TAM to identify the devices and/or a device to
 identify TAMs or Trusted Components.

Tschofenig, et al. Expires 9 May 2024 [Page 34]

Internet-Draft TEEP Protocol November 2023

7.1.1. Handling a QueryResponse Message

 If a QueryResponse message is received, the TAM verifies the presence
 of any parameters required based on the data-items-requested in the
 QueryRequest, and also validates that the nonce in any SUIT Report
 matches the token sent in the QueryRequest message if a token was
 present. If these requirements are not met, the TAM drops the
 message and sends an Update message containing an appropriate err-
 code and err-msg. It may also do additional implementation specific
 actions such as logging the results. If the requirements are met,
 processing continues as follows.

 If a QueryResponse message is received that contains an attestation-
 payload, the TAM checks whether it contains Evidence or an
 Attestation Result by inspecting the attestation-payload-format
 parameter. The media type defined in Section 5 indicates an
 Attestation Result, though future extensions might also indicate
 other Attestation Result formats in the future. Any other
 unrecognized value indicates Evidence. If it contains an Attestation
 Result, processing continues as in Section 7.1.1.1.

 If the QueryResponse is instead determined to contain Evidence, the
 TAM passes the Evidence (via some mechanism out of scope of this
 document) to an attestation Verifier (see [RFC9334]) to determine
 whether the Agent is in a trustworthy state. Once the TAM receives
 an Attestation Result from the Verifier, processing continues as in
 Section 7.1.1.1.

7.1.1.1. Handling an Attestation Result

 The Attestation Result must first be validated as follows:

 1. Verify that the Attestation Result was signed by a Verifier that
 the TAM trusts.

 2. Verify that the Attestation Result contains a "cnf" claim (as
 defined in Section 3.1 of [RFC8747]) where the key ID is the hash
 of the TEEP Agent public key used to verify the signature on the
 TEEP message, and the hash is computed using the Digest Algorithm
 specified by one of the SUIT profiles supported by the TAM
 (SHA-256 for the ones mandated in this document).

 See Sections 3.4 and 6 of [RFC8747] for more discussion.

Tschofenig, et al. Expires 9 May 2024 [Page 35]

Internet-Draft TEEP Protocol November 2023

 Based on the results of attestation (if any), any SUIT Reports, and
 the lists of installed, requested, and unneeded Trusted Components
 reported in the QueryResponse, the TAM determines, in any
 implementation specific manner, which Trusted Components need to be
 installed, updated, or deleted, if any. There are in typically three
 cases:

 1. Attestation failed. This indicates that the rest of the
 information in the QueryResponse cannot necessarily be trusted,
 as the TEEP Agent may not be healthy (or at least up to date).
 In this case, the TAM might attempt to use TEEP to update any
 Trusted Components (e.g., firmware, the TEEP Agent itself, etc.)
 needed to get the TEEP Agent back into an up-to-date state that
 would allow attestation to succeed. If the TAM does not have
 permission to update such components (this can happen if
 different TAMs manage different components in the device), the
 TAM instead responds with an Update message containing an
 appropriate err-msg, and err-code set to
 ERR_ATTESTATION_REQUIRED.

 2. Attestation succeeded (so the QueryResponse information can be
 accepted as valid), but the set of Trusted Components needs to be
 updated based on TAM policy changes or requests from the TEEP
 Agent.

 3. Attestation succeeded, and no changes are needed.

 If any Trusted Components need to be installed, updated, or deleted,
 the TAM sends an Update message containing SUIT Manifests with
 command sequences to do the relevant installs, updates, or deletes.
 It is important to note that the TEEP Agent’s Update Procedure
 requires resolving and installing any dependencies indicated in the
 manifest, which may take some time, and the resulting Success or
 Error message is generated only after completing the Update
 Procedure. Hence, depending on the freshness mechanism in use, the
 TAM may need to store data (e.g., a nonce) for some time. For
 example, if a mobile device needs an unmetered connection to download
 a dependency, it may take hours or longer before the device has
 sufficient access. A different freshness mechanism, such as
 timestamps, might be more appropriate in such cases.

 If no Trusted Components need to be installed, updated, or deleted,
 but the QueryResponse included Evidence, the TAM MAY (e.g., based on
 attestation-payload-format parameters received from the TEEP Agent in
 the QueryResponse) still send an Update message with no SUIT
 Manifests, to pass the Attestation Result back to the TEEP Agent.

Tschofenig, et al. Expires 9 May 2024 [Page 36]

Internet-Draft TEEP Protocol November 2023

7.1.2. Handling a Success or Error Message

 If a Success or Error message is received containing one or more SUIT
 Reports, the TAM also validates that the nonce in any SUIT Report
 matches the token sent in the Update message, and drops the message
 if it does not match. Otherwise, the TAM handles the update in any
 implementation specific way, such as updating any locally cached
 information about the state of the TEEP Agent, or logging the
 results.

 If an Error message is received with the error code
 ERR_ATTESTATION_REQUIRED, it indicates that the TEEP Agent is
 requesting attestation of the TAM. In this case, the TAM MUST send
 another QueryRequest with an attestation-payload and optionally a
 suit-report to the TEEP Agent.

 If any other Error message is received, the TAM can handle it in any
 implementation specific way, but Section 4.6 provides recommendations
 for such handling.

7.2. TEEP Agent Behavior

 When the RequestTA API is invoked, the TEEP Agent first checks
 whether the requested TA is already installed. If it is already
 installed, the TEEP Agent passes no data back to the caller.
 Otherwise, if the TEEP Agent chooses to initiate the process of
 requesting the indicated TA, it determines (in any implementation
 specific way) the TAM URI based on any TAM URI provided by the
 RequestTA caller and any local configuration, and passes back the TAM
 URI to connect to. It MAY also pass back a QueryResponse message if
 all of the following conditions are true:

 * The last QueryRequest message received from that TAM contained no
 token or challenge,

 * The ProcessError API was not invoked for that TAM since the last
 QueryResponse message was received from it, and

 * The public key or certificate of the TAM is cached and not
 expired.

 When the RequestPolicyCheck API is invoked, the TEEP Agent decides
 whether to initiate communication with any trusted TAMs (e.g., it
 might choose to do so for a given TAM unless it detects that it has
 already communicated with that TAM recently). If so, it passes back
 a TAM URI to connect to. If the TEEP Agent has multiple TAMs it
 needs to connect with, it just passes back one, with the expectation
 that RequestPolicyCheck API will be invoked to retrieve each one

Tschofenig, et al. Expires 9 May 2024 [Page 37]

Internet-Draft TEEP Protocol November 2023

 successively until there are no more and it can pass back no data at
 that time. Thus, once a TAM URI is returned, the TEEP Agent can
 remember that it has already initiated communication with that TAM.

 When the ProcessError API is invoked, the TEEP Agent can handle it in
 any implementation specific way, such as logging the error or using
 the information in future choices of TAM URI.

 When the ProcessTeepMessage API is invoked, the Agent first does
 validation as specified in Section 4.1.2, and if it is not valid then
 the Agent responds with an Error message. Otherwise, processing
 continues as follows based on the type of message.

7.2.1. Handling a QueryRequest Message

 When a QueryRequest message is received, it is processed as follows.

 If the TEEP Agent requires attesting the TAM and the QueryRequest
 message did not contain an attestation-payload, the TEEP Agent MUST
 send an Error Message with the error code ERR_ATTESTATION_REQUIRED
 supplying the supported-freshness-mechanisms and challenge if needed.
 Otherwise, processing continues as follows.

 If the TEEP Agent requires attesting the TAM and the QueryRequest
 message did contain an attestation-payload, the TEEP Agent checks
 whether it contains Evidence or an Attestation Result by inspecting
 the attestation-payload-format parameter. The media type defined in
 Section 5 indicates an Attestation Result, though future extensions
 might also indicate other Attestation Result formats in the future.
 Any other unrecognized value indicates Evidence. If it contains an
 Attestation Result, processing continues as in Section 7.2.1.1.

 If the QueryRequest is instead determined to contain Evidence, the
 TEEP Agent passes the Evidence (via some mechanism out of scope of
 this document) to an attestation Verifier (see [RFC9334]) to
 determine whether the TAM is in a trustworthy state. Once the TEEP
 Agent receives an Attestation Result from the Verifier, processing
 continues as in Section 7.2.1.1.

 The TEEP Agent MAY also use (in any implementation specific way) any
 SUIT Reports in the QueryRequest in determining whether it trusts the
 TAM. If a SUIT Report uses a suit-cose-profile that the TEEP Agent
 does not support, then the TEEP Agent MUST send an Error Message with
 the error code ERR_UNSUPPORTED_SUIT_REPORT supplying the supported-
 suit-cose-profiles. Otherwise, processing continues as follows.

Tschofenig, et al. Expires 9 May 2024 [Page 38]

Internet-Draft TEEP Protocol November 2023

 Once the Attestation Result is handled, or if the TEEP Agent does not
 require attesting the TAM, the Agent responds with a QueryResponse
 message if all fields were understood, or an Error message if any
 error was encountered.

7.2.1.1. Handling an Attestation Result

 The Attestation Result must first be validated as follows:

 1. Verify that the Attestation Result was signed by a Verifier that
 the TEEP Agent trusts.

 2. Verify that the Attestation Result contains a "cnf" claim (as
 defined in Section 3.1 of [RFC8747]) where the key ID is the hash
 of the TAM public key used to verify the signature on the TEEP
 message, and the hash is computed using the Digest Algorithm
 specified by one of the SUIT profiles supported by the TEEP Agent
 (SHA-256 for the ones mandated in this document).

 See Sections 3.4 and 6 of [RFC8747] for more discussion.

7.2.2. Handling an Update Message

 When an Update message is received, the Agent attempts to unlink any
 SUIT manifests listed in the unneeded-manifest-list field of the
 message, and responds with an Error message if any error was
 encountered. If the unneeded-manifest-list was empty, or no error
 was encountered processing it, the Agent attempts to update the
 Trusted Components specified in the SUIT manifests by following the
 Update Procedure specified in [I-D.ietf-suit-manifest], and responds
 with a Success message if all SUIT manifests were successfully
 installed, or an Error message if any error was encountered. It is
 important to note that the Update Procedure requires resolving and
 installing any dependencies indicated in the manifest, which may take
 some time, and the Success or Error message is generated only after
 completing the Update Procedure.

8. Cipher Suites

 TEEP requires algorithms for various purposes:

 * Algorithms for signing TEEP messages exchanged between the TEEP
 Agent and the TAM.

 * Algorithms for signing EAT-based Evidence sent by the Attester via
 the TEEP Agent and the TAM to the Verifier.

Tschofenig, et al. Expires 9 May 2024 [Page 39]

Internet-Draft TEEP Protocol November 2023

 * Algorithms for encrypting EAT-based Evidence sent by the TEEP
 Agent to the TAM. (The TAM will decrypt the encrypted Evidence
 and will forward it to the Verifier.)

 * Algorithms for signing and optionally encrypting SUIT reports sent
 by the TEEP Agent to the TAM.

 * Algorithms for signing and optionally encrypting SUIT manifests
 sent by the Trusted Component Signer to the TEEP Agent.

 Further details are provided for the protection of TEEP messages,
 SUIT Reports, and EATs.

8.1. TEEP Messages

 The TEEP protocol uses COSE for protection of TEEP messages in both
 directions. To negotiate cryptographic mechanisms and algorithms,
 the TEEP protocol defines the following cipher suite structure, which
 is used to specify an ordered set of operations (e.g., sign) done as
 part of composing a TEEP message. Although this specification only
 specifies the use of signing and relies on payload encryption to
 protect sensitive information, future extensions might specify
 support for encryption and/or MAC operations if needed.

Tschofenig, et al. Expires 9 May 2024 [Page 40]

Internet-Draft TEEP Protocol November 2023

 ; teep-cipher-suites
 $teep-cipher-suite /= teep-cipher-suite-sign1-eddsa
 $teep-cipher-suite /= teep-cipher-suite-sign1-es256

 ;The following two cipher suites have only a single operation each.
 ;Other cipher suites may be defined to have multiple operations.
 ;It is MANDATORY for TAM to support them, and OPTIONAL
 ;to support any additional ones that use COSE_Sign_Tagged, or other
 ;signing, encryption, or MAC algorithms.

 teep-operation-sign1-eddsa = [cose-sign1, cose-alg-eddsa]
 teep-operation-sign1-es256 = [cose-sign1, cose-alg-es256]

 teep-cipher-suite-sign1-eddsa = [teep-operation-sign1-eddsa]
 teep-cipher-suite-sign1-es256 = [teep-operation-sign1-es256]

 ;MANDATORY for TAM and TEEP Agent to support the following COSE
 ;operations, and OPTIONAL to support additional ones such as
 ;COSE_Sign_Tagged, COSE_Encrypt0_Tagged, etc.

 cose-sign1 = 18 ; CoAP Content-Format value

 ;MANDATORY for TAM to support the following, and OPTIONAL to implement
 ;any additional algorithms from the IANA COSE Algorithms registry.

 cose-alg-es256 = -7 ; ECDSA w/ SHA-256
 cose-alg-eddsa = -8 ; EdDSA

 Each operation in a given cipher suite has two elements:

 * a COSE-type defined in Section 2 of [RFC9052] that identifies the
 type of operation, and

 * a specific cryptographic algorithm as defined in the COSE
 Algorithms registry [COSE.Algorithm] to be used to perform that
 operation.

 A TAM MUST support both of the cipher suites defined above. A TEEP
 Agent MUST support at least one of the two but can choose which one.
 For example, a TEEP Agent might choose a given cipher suite if it has
 hardware support for it. A TAM or TEEP Agent MAY also support any
 other algorithms in the COSE Algorithms registry in addition to the
 mandatory ones listed above. It MAY also support use with COSE_Sign
 or other COSE types in additional cipher suites.

 Any cipher suites without confidentiality protection can only be
 added if the associated specification includes a discussion of
 security considerations and applicability, since manifests may carry

Tschofenig, et al. Expires 9 May 2024 [Page 41]

Internet-Draft TEEP Protocol November 2023

 sensitive information. For example, Section 6 of [RFC9397] permits
 implementations that terminate transport security inside the TEE and
 if the transport security provides confidentiality then additional
 encryption might not be needed in the manifest for some use cases.
 For most use cases, however, manifest confidentiality will be needed
 to protect sensitive fields from the TAM as discussed in Section 9.8
 of [RFC9397].

 The cipher suites defined above do not do encryption at the TEEP
 layer, but permit encryption of the SUIT payload using a mechanism
 such as [I-D.ietf-suit-firmware-encryption]. See Section 10 and
 Section 8.2 for more discussion of specific payloads.

 For the initial QueryRequest message, unless the TAM has more
 specific knowledge about the TEEP Agent (e.g., if the QueryRequest is
 sent in response to some underlying transport message that contains a
 hint), the message does not use COSE_Sign1 with one of the above
 cipher suites, but instead uses COSE_Sign with multiple signatures,
 one for each algorithm used in any of the cipher suites listed in the
 supported-teep-cipher-suites parameter of the QueryRequest, so that a
 TEEP Agent supporting any one of them can verify a signature. If the
 TAM does have specific knowledge about which cipher suite the TEEP
 Agent supports, it MAY instead use that cipher suite with the
 QueryRequest.

 For an Error message with code ERR_UNSUPPORTED_CIPHER_SUITES, the
 TEEP Agent MUST protect it with any of the cipher suites mandatory
 for the TAM.

 For all other TEEP messages between the TAM and TEEP Agent, the
 selected TEEP cipher suite MUST be used in both directions.

8.2. EATs and SUIT Reports

 TEEP uses COSE for confidentiality of EATs and SUIT Reports sent by a
 TEEP Agent. The TEEP Agent obtains a signed EAT and then SHOULD
 encrypt it using the TAM as the recipient. A SUIT Report is created
 by a SUIT processor, which is part of the TEEP Agent itself. The
 TEEP Agent is therefore in control of signing the SUIT Report and
 SHOULD encrypt it. Again, the TAM is the recipient of the encrypted
 content. For content-key distribution Ephemeral-Static Diffie-
 Hellman (ES-DH) is used in this specification. See Section 8.5.5 and
 Appendix B of [RFC9052] for more details. (If
 [I-D.ietf-suit-firmware-encryption] is used, it is also the same as
 discussed in Section 6.2 of that document.)

Tschofenig, et al. Expires 9 May 2024 [Page 42]

Internet-Draft TEEP Protocol November 2023

 ES-DH is a scheme that provides public key encryption given a
 recipient’s public key. Hence, the TEEP Agent needs to be in
 possession of the public key of the TAM. See Section 5 of [RFC9397]
 for more discussion of TAM keys used by the TEEP Agent. There are
 multiple variants of this scheme; this document uses the variant
 specified in Section 8.5.5 of [RFC9052].

 The following two layer structure is used:

 * Layer 0: Has a content encrypted with the Content Encryption Key
 (CEK), a symmetric key. For encrypting SUIT Reports and EATs the
 content MUST NOT be detached.

 * Layer 1: Uses the AES Key Wrap algorithm to encrypt the randomly
 generated CEK with the Key Encryption Key (KEK) derived with ES-
 DH, whereby the resulting symmetric key is fed into the HKDF-based
 key derivation function.

 As a result, the two layers combine ES-DH with AES-KW and HKDF.

 This document re-uses the CDDL defined in Section 6.2.3 of
 [I-D.ietf-suit-firmware-encryption] and the context information
 structure defined in Section 6.2.4 of
 [I-D.ietf-suit-firmware-encryption] although with an important
 modification. The COSE_KDF_Context.SuppPubInfo.other value MUST be
 set to "SUIT Report Encryption" when a SUIT Report is encrypted and
 MUST be set to "EAT Encryption" when an EAT is encrypted. The
 COSE_KDF_Context.SuppPubInfo.other field captures the protocol in
 which the ES-DH content key distribution algorithm is used.

 This specification defines cipher suites for confidentiality
 protection of EATs and SUIT Reports. The TAM MUST support each
 cipher suite defined below, based on definitions in
 [I-D.ietf-suit-mti]. A TEEP Agent MUST support at least one of the
 cipher suites below but can choose which one. For example, a TEEP
 Agent might choose a given cipher suite if it has hardware support
 for it. A TAM or TEEP Agent MAY also support other algorithms in the
 COSE Algorithms registry. It MAY also support use with COSE_Encrypt
 or other COSE types in additional cipher suites.

 ; suit-cose-profile
 $suit-cose-profile /= suit-sha256-es256-ecdh-a128ctr
 $suit-cose-profile /= suit-sha256-eddsa-ecdh-a128ctr
 $suit-cose-profile /= suit-sha256-es256-ecdh-a128gcm
 $suit-cose-profile /= suit-sha256-eddsa-ecdh-chacha-poly

Tschofenig, et al. Expires 9 May 2024 [Page 43]

Internet-Draft TEEP Protocol November 2023

9. Attestation Freshness Mechanisms

 A freshness mechanism determines how a TAM can tell whether an
 attestation payload provided in a QueryResponse is fresh. There are
 multiple ways this can be done as discussed in Section 10 of
 [RFC9334].

 Each freshness mechanism is identified with an integer value, which
 corresponds to an IANA registered freshness mechanism (see the IANA
 Considerations section of
 [I-D.ietf-rats-reference-interaction-models]). This document uses
 the following freshness mechanisms which may be added to in the
 future by TEEP extensions:

 ; freshness-mechanisms
 FRESHNESS_NONCE = 0
 FRESHNESS_TIMESTAMP = 1

 $freshness-mechanism /= FRESHNESS_NONCE
 $freshness-mechanism /= FRESHNESS_TIMESTAMP

 An implementation MUST support the Nonce mechanism and MAY support
 additional mechanisms.

 In the Nonce mechanism, the attestation payload MUST include a nonce
 provided in the QueryRequest challenge if the Background Check model
 is used, or in the QueryRequest token if the Passport model is used.
 The timestamp mechanism uses a timestamp determined via mechanisms
 outside the TEEP protocol, and the challenge is only needed in the
 QueryRequest message if a challenge is needed in generating the
 attestation payload for reasons other than freshness.

 If a TAM supports multiple freshness mechanisms that require
 different challenge formats, the QueryRequest message can currently
 only send one such challenge. This situation is expected to be rare,
 but should it occur, the TAM can choose to prioritize one of them and
 exclude the other from the supported-freshness-mechanisms in the
 QueryRequest, and resend the QueryRequest with the other mechanism if
 an ERR_UNSUPPORTED_FRESHNESS_MECHANISMS Error is received that
 indicates the TEEP Agent supports the other mechanism.

10. Security Considerations

 This section summarizes the security considerations discussed in this
 specification:

 Cryptographic Algorithms

Tschofenig, et al. Expires 9 May 2024 [Page 44]

Internet-Draft TEEP Protocol November 2023

 TEEP protocol messages exchanged between the TAM and the TEEP
 Agent are protected using COSE. This specification relies on the
 cryptographic algorithms provided by COSE. Public key based
 authentication is used by the TEEP Agent to authenticate the TAM
 and vice versa.

 Attestation
 A TAM relies on signed Attestation Results provided by a Verifier,
 either obtained directly using a mechanism outside the TEEP
 protocol (by using some mechanism to pass Evidence obtained in the
 attestation payload of a QueryResponse, and getting back the
 Attestation Results), or indirectly via the TEEP Agent forwarding
 the Attestation Results in the attestation payload of a
 QueryResponse. See the security considerations of the specific
 mechanism in use (e.g., EAT) for more discussion.

 An impersonation attack, where one TEEP Agent attempts to use the
 attestation payload of another TEEP Agent, can be prevented using
 a proof-of-possession approach. The "cnf" claim is mandatory in
 the EAT profile for EAT for this purpose. See Section 6 of
 [RFC8747] and Section 7.1.1.1 and Section 7.2.1.1 of this document
 for more discussion.

 Trusted Component Binaries
 Each Trusted Component binary is signed by a Trusted Component
 Signer. It is the responsibility of the TAM to relay only
 verified Trusted Components from authorized Trusted Component
 Signers. Delivery of a Trusted Component to the TEEP Agent is
 then the responsibility of the TAM, using the security mechanisms
 provided by the TEEP protocol. To protect the Trusted Component
 binary, the SUIT manifest format is used and it offers a variety
 of security features, including digital signatures and content
 encryption, if a SUIT mechanism such as
 [I-D.ietf-suit-firmware-encryption] is used.

 Personalization Data
 A Trusted Component Signer or TAM can supply personalization data
 along with a Trusted Component. This data is also protected by a
 SUIT manifest. Personalization data is signed and encrypted by a
 Trusted Component Signer, if a SUIT mechanism such as
 [I-D.ietf-suit-firmware-encryption] is used.

 TEEP Broker
 As discussed in section 6 of [RFC9397], the TEEP protocol
 typically relies on a TEEP Broker to relay messages between the
 TAM and the TEEP Agent. When the TEEP Broker is compromised it
 can drop messages, delay the delivery of messages, and replay
 messages but it cannot modify those messages. (A replay would be,

Tschofenig, et al. Expires 9 May 2024 [Page 45]

Internet-Draft TEEP Protocol November 2023

 however, detected by the TEEP Agent.) A compromised TEEP Broker
 could reorder messages in an attempt to install an old version of
 a Trusted Component. Information in the manifest ensures that
 TEEP Agents are protected against such downgrade attacks based on
 features offered by the manifest itself.

 Replay Protection
 The TEEP protocol supports replay protection as follows. The
 transport protocol under the TEEP protocol might provide replay
 protection, but may be terminated in the TEEP Broker which is not
 trusted by the TEEP Agent and so the TEEP protocol does replay
 protection itself. If attestation of the TAM is used, the
 attestation freshness mechanism provides replay protection for
 attested QueryRequest messages. If non-attested QueryRequest
 messages are replayed, the TEEP Agent will generate QueryResponse
 or Error messages, but the REE can already conduct Denial of
 Service attacks against the TEE and/or the TAM even without the
 TEEP protocol. QueryResponse messages have replay protection via
 attestation freshness mechanism, or the token field in the message
 if attestation is not used. Update messages have replay
 protection via the suit-manifest-sequence-number (see
 Section 8.4.2 of [I-D.ietf-suit-manifest]). Error and Success
 messages have replay protection via SUIT Reports and/or the token
 field in the message, where a TAM can detect which message it is
 in response to.

 Trusted Component Signer Compromise
 A TAM is responsible for vetting a Trusted Component and before
 distributing them to TEEP Agents.
 It is RECOMMENDED to provide a way to update the trust anchor
 store used by the TEE, for example using a firmware update
 mechanism such as [I-D.ietf-rats-concise-ta-stores]. Thus, if a
 Trusted Component Signer is later compromised, the TAM can update
 the trust anchor store used by the TEE, for example using a
 firmware update mechanism.

 CA Compromise
 The CA issuing certificates to a TEE or a Trusted Component Signer
 might get compromised. It is RECOMMENDED to provide a way to
 update the trust anchor store used by the TEE, for example by
 using a firmware update mechanism, Concise TA Stores
 [I-D.ietf-rats-concise-ta-stores], Trust Anchor Management
 Protocol (TAMP) [RFC5934] or a similar mechanism. If the CA
 issuing certificates to devices gets compromised then these
 devices will be rejected by a TAM, if revocation is available to
 the TAM.

 TAM Certificate Expiry

Tschofenig, et al. Expires 9 May 2024 [Page 46]

Internet-Draft TEEP Protocol November 2023

 The integrity and the accuracy of the clock within the TEE
 determines the ability to determine an expired TAM certificate, if
 certificates are used.

 Compromised Time Source
 As discussed above, certificate validity checks rely on comparing
 validity dates to the current time, which relies on having a
 trusted source of time, such as [RFC8915]. A compromised time
 source could thus be used to subvert such validity checks.

11. Privacy Considerations

 Depending on the properties of the attestation mechanism, it is
 possible to uniquely identify a device based on information in the
 attestation payload or in the certificate used to sign the
 attestation payload. This uniqueness may raise privacy concerns. To
 lower the privacy implications the TEEP Agent MUST present its
 attestation payload only to an authenticated and authorized TAM and
 when using an EAT, it SHOULD use encryption as discussed in
 [I-D.ietf-rats-eat], since confidentiality is not provided by the
 TEEP protocol itself and the transport protocol under the TEEP
 protocol might be implemented outside of any TEE. If any mechanism
 other than EAT is used, it is up to that mechanism to specify how
 privacy is provided.

 Since SUIT Reports can also contain sensitive information, a TEEP
 Agent SHOULD also encrypt SUIT Reports as discussed in Section 8.2.

 In addition, in the usage scenario discussed in Section 4.4.1, a
 device reveals its IP address to the Trusted Component Binary server.
 This can reveal to that server at least a clue as to its location,
 which might be sensitive information in some cases.

 EATs and SUIT Reports from a TAM can also be present in a
 QueryRequest. Typically, the ability to uniquely identify a TAM is
 less of a concern than it is for TEEP Agents, but where
 confidentiality is a concern for the TAM, such EATs and SUIT Reports
 SHOULD be encrypted just like ones from TEEP Agents.

12. IANA Considerations

12.1. Media Type Registration

 IANA is requested to assign a media type for application/teep+cbor.

 Type name: application

 Subtype name: teep+cbor

Tschofenig, et al. Expires 9 May 2024 [Page 47]

Internet-Draft TEEP Protocol November 2023

 Required parameters: none

 Optional parameters: none

 Encoding considerations: Same as encoding considerations of
 application/cbor.

 Security considerations: See Security Considerations Section of this
 document.

 Interoperability considerations: Same as interoperability
 considerations of application/cbor as specified in [RFC8949].

 Published specification: This document.

 Applications that use this media type: TEEP protocol implementations

 Fragment identifier considerations: N/A

 Additional information: Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person to contact for further information: teep@ietf.org

 Intended usage: COMMON

 Restrictions on usage: none

 Author: See the "Authors’ Addresses" section of this document

 Change controller: IETF

13. References

13.1. Normative References

 [COSE.Algorithm]
 IANA, "COSE Algorithms", n.d.,
 <https://www.iana.org/assignments/cose/
 cose.xhtml#algorithms>.

Tschofenig, et al. Expires 9 May 2024 [Page 48]

Internet-Draft TEEP Protocol November 2023

 [I-D.ietf-cose-key-thumbprint]
 Isobe, K., Tschofenig, H., and O. Steele, "CBOR Object
 Signing and Encryption (COSE) Key Thumbprint", Work in
 Progress, Internet-Draft, draft-ietf-cose-key-thumbprint-
 04, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cose-
 key-thumbprint-04>.

 [I-D.ietf-rats-eat]
 Lundblade, L., Mandyam, G., O’Donoghue, J., and C.
 Wallace, "The Entity Attestation Token (EAT)", Work in
 Progress, Internet-Draft, draft-ietf-rats-eat-22, 14
 October 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-rats-eat-22>.

 [I-D.ietf-suit-manifest]
 Moran, B., Tschofenig, H., Birkholz, H., Zandberg, K., and
 O. Rønningstad, "A Concise Binary Object Representation
 (CBOR)-based Serialization Format for the Software Updates
 for Internet of Things (SUIT) Manifest", Work in Progress,
 Internet-Draft, draft-ietf-suit-manifest-24, 23 October
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 suit-manifest-24>.

 [I-D.ietf-suit-mti]
 Moran, B., Rønningstad, O., and A. Tsukamoto, "Mandatory-
 to-Implement Algorithms for Authors and Recipients of
 Software Update for the Internet of Things manifests",
 Work in Progress, Internet-Draft, draft-ietf-suit-mti-03,
 23 October 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-suit-mti-03>.

 [I-D.ietf-suit-report]
 Moran, B. and H. Birkholz, "Secure Reporting of Update
 Status", Work in Progress, Internet-Draft, draft-ietf-
 suit-report-07, 11 September 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 report-07>.

 [I-D.ietf-suit-trust-domains]
 Moran, B. and K. Takayama, "SUIT Manifest Extensions for
 Multiple Trust Domains", Work in Progress, Internet-Draft,
 draft-ietf-suit-trust-domains-05, 11 September 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 trust-domains-05>.

Tschofenig, et al. Expires 9 May 2024 [Page 49]

Internet-Draft TEEP Protocol November 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/rfc/rfc3629>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/rfc/rfc5198>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/rfc/rfc8747>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8949>.

 [RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052,
 DOI 10.17487/RFC9052, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9052>.

13.2. Informative References

 [I-D.ietf-rats-ar4si]
 Voit, E., Birkholz, H., Hardjono, T., Fossati, T., and V.
 Scarlata, "Attestation Results for Secure Interactions",
 Work in Progress, Internet-Draft, draft-ietf-rats-ar4si-
 05, 30 August 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
 ar4si-05>.

 [I-D.ietf-rats-concise-ta-stores]
 Wallace, C., Housley, R., Fossati, T., and Y. Deshpande,
 "Concise TA Stores (CoTS)", Work in Progress, Internet-
 Draft, draft-ietf-rats-concise-ta-stores-01, 5 June 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
 concise-ta-stores-01>.

Tschofenig, et al. Expires 9 May 2024 [Page 50]

Internet-Draft TEEP Protocol November 2023

 [I-D.ietf-rats-eat-media-type]
 Lundblade, L., Birkholz, H., and T. Fossati, "EAT Media
 Types", Work in Progress, Internet-Draft, draft-ietf-rats-
 eat-media-type-04, 23 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
 eat-media-type-04>.

 [I-D.ietf-rats-reference-interaction-models]
 Birkholz, H., Eckel, M., Pan, W., and E. Voit, "Reference
 Interaction Models for Remote Attestation Procedures",
 Work in Progress, Internet-Draft, draft-ietf-rats-
 reference-interaction-models-08, 10 September 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
 reference-interaction-models-08>.

 [I-D.ietf-suit-firmware-encryption]
 Tschofenig, H., Housley, R., Moran, B., Brown, D., and K.
 Takayama, "Encrypted Payloads in SUIT Manifests", Work in
 Progress, Internet-Draft, draft-ietf-suit-firmware-
 encryption-18, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-suit-
 firmware-encryption-18>.

 [RFC5934] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Management Protocol (TAMP)", RFC 5934,
 DOI 10.17487/RFC5934, August 2010,
 <https://www.rfc-editor.org/rfc/rfc5934>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/rfc/rfc8915>.

 [RFC9334] Birkholz, H., Thaler, D., Richardson, M., Smith, N., and
 W. Pan, "Remote ATtestation procedureS (RATS)
 Architecture", RFC 9334, DOI 10.17487/RFC9334, January
 2023, <https://www.rfc-editor.org/rfc/rfc9334>.

 [RFC9397] Pei, M., Tschofenig, H., Thaler, D., and D. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", RFC 9397, DOI 10.17487/RFC9397, July 2023,
 <https://www.rfc-editor.org/rfc/rfc9397>.

Tschofenig, et al. Expires 9 May 2024 [Page 51]

Internet-Draft TEEP Protocol November 2023

A. Contributors

 We would like to thank Brian Witten (Symantec), Tyler Kim (Solacia),
 Nick Cook (Arm), and Minho Yoo (IoTrust) for their contributions to
 the Open Trust Protocol (OTrP), which influenced the design of this
 specification.

B. Acknowledgements

 We would like to thank Eve Schooler for the suggestion of the
 protocol name.

 We would like to thank Kohei Isobe (TRASIO/SECOM), Ken Takayama
 (SECOM), Kuniyasu Suzaki (TRASIO/AIST), Tsukasa Oi (TRASIO), and
 Yuichi Takita (SECOM) for their valuable implementation feedback.

 We would also like to thank Carsten Bormann and Henk Birkholz for
 their help with the CDDL.

C. Complete CDDL

 Valid TEEP messages adhere to the following CDDL data definitions,
 except that SUIT_Envelope and SUIT_Component_Identifier are specified
 in [I-D.ietf-suit-manifest].

 This section is informative and merely summarizes the normative CDDL
 snippets in the body of this document.

 ; DO NOT EDIT this cddl file manually.
 ; This cddl file is Auto-generated file from md file.
 ; Edit the md file and run make for generating this cddl file.
 ; Please do not forget to commit and push this cddl file to git repo
 ; every time you have revised the md file.

 teep-message = $teep-message-type .within teep-message-framework

 teep-message-framework = [
 type: $teep-type / $teep-type-extension,
 options: { * teep-option },
 * any; further elements, e.g., for data-item-requested
]

 teep-option = (uint => any)

 ; messages defined below:
 $teep-message-type /= query-request
 $teep-message-type /= query-response
 $teep-message-type /= update

Tschofenig, et al. Expires 9 May 2024 [Page 52]

Internet-Draft TEEP Protocol November 2023

 $teep-message-type /= teep-success
 $teep-message-type /= teep-error

 ; message type numbers, in one byte which could take a number from 0 to 23
 $teep-type = (0..23)
 TEEP-TYPE-query-request = 1
 TEEP-TYPE-query-response = 2
 TEEP-TYPE-update = 3
 TEEP-TYPE-teep-success = 5
 TEEP-TYPE-teep-error = 6

 query-request = [
 type: TEEP-TYPE-query-request,
 options: {
 ? token => bstr .size (8..64),
 ? supported-freshness-mechanisms => [+ $freshness-mechanism],
 ? challenge => bstr .size (8..512),
 ? versions => [+ version],
 ? attestation-payload-format => text,
 ? attestation-payload => bstr,
 ? suit-reports => [+ bstr],
 * $$query-request-extensions,
 * $$teep-option-extensions
 },
 supported-teep-cipher-suites: [+ $teep-cipher-suite],
 supported-suit-cose-profiles: [+ $suit-cose-profile],
 data-item-requested: uint .bits data-item-requested
]

 version = uint .size 4
 ext-info = uint .size 4

 ; data items as bitmaps
 data-item-requested = &(
 attestation: 0,
 trusted-components: 1,
 extensions: 2,
 suit-reports: 3,
)

 ; teep-cipher-suites
 $teep-cipher-suite /= teep-cipher-suite-sign1-eddsa
 $teep-cipher-suite /= teep-cipher-suite-sign1-es256

 ;The following two cipher suites have only a single operation each.
 ;Other cipher suites may be defined to have multiple operations.
 ;It is MANDATORY for TAM to support them, and OPTIONAL
 ;to support any additional ones that use COSE_Sign_Tagged, or other

Tschofenig, et al. Expires 9 May 2024 [Page 53]

Internet-Draft TEEP Protocol November 2023

 ;signing, encryption, or MAC algorithms.

 teep-operation-sign1-eddsa = [cose-sign1, cose-alg-eddsa]
 teep-operation-sign1-es256 = [cose-sign1, cose-alg-es256]

 teep-cipher-suite-sign1-eddsa = [teep-operation-sign1-eddsa]
 teep-cipher-suite-sign1-es256 = [teep-operation-sign1-es256]

 ;MANDATORY for TAM and TEEP Agent to support the following COSE
 ;operations, and OPTIONAL to support additional ones such as
 ;COSE_Sign_Tagged, COSE_Encrypt0_Tagged, etc.

 cose-sign1 = 18 ; CoAP Content-Format value

 ;MANDATORY for TAM to support the following, and OPTIONAL to implement
 ;any additional algorithms from the IANA COSE Algorithms registry.

 cose-alg-es256 = -7 ; ECDSA w/ SHA-256
 cose-alg-eddsa = -8 ; EdDSA

 ; suit-cose-profile
 $suit-cose-profile /= suit-sha256-es256-ecdh-a128ctr
 $suit-cose-profile /= suit-sha256-eddsa-ecdh-a128ctr
 $suit-cose-profile /= suit-sha256-es256-ecdh-a128gcm
 $suit-cose-profile /= suit-sha256-eddsa-ecdh-chacha-poly

 ; freshness-mechanisms
 FRESHNESS_NONCE = 0
 FRESHNESS_TIMESTAMP = 1

 $freshness-mechanism /= FRESHNESS_NONCE
 $freshness-mechanism /= FRESHNESS_TIMESTAMP

 query-response = [
 type: TEEP-TYPE-query-response,
 options: {
 ? token => bstr .size (8..64),
 ? selected-version => version,
 ? attestation-payload-format => text,
 ? attestation-payload => bstr,
 ? suit-reports => [+ bstr],
 ? tc-list => [+ system-property-claims],
 ? requested-tc-list => [+ requested-tc-info],
 ? unneeded-manifest-list => [+ SUIT_Component_Identifier],
 ? ext-list => [+ ext-info],
 * $$query-response-extensions,
 * $$teep-option-extensions
 }

Tschofenig, et al. Expires 9 May 2024 [Page 54]

Internet-Draft TEEP Protocol November 2023

]

 requested-tc-info = {
 component-id => SUIT_Component_Identifier,
 ? tc-manifest-sequence-number => uint .size 8,
 ? have-binary => bool
 }

 update = [
 type: TEEP-TYPE-update,
 options: {
 ? token => bstr .size (8..64),
 ? unneeded-manifest-list => [+ SUIT_Component_Identifier],
 ? manifest-list => [+ bstr .cbor SUIT_Envelope],
 ? attestation-payload-format => text,
 ? attestation-payload => bstr,
 ? err-code => (0..23),
 ? err-msg => text .size (1..128),
 * $$update-extensions,
 * $$teep-option-extensions
 }
]

 teep-success = [
 type: TEEP-TYPE-teep-success,
 options: {
 ? token => bstr .size (8..64),
 ? msg => text .size (1..128),
 ? suit-reports => [+ SUIT_Report],
 * $$teep-success-extensions,
 * $$teep-option-extensions
 }
]

 teep-error = [
 type: TEEP-TYPE-teep-error,
 options: {
 ? token => bstr .size (8..64),
 ? err-msg => text .size (1..128),
 ? supported-teep-cipher-suites => [+ $teep-cipher-suite],
 ? supported-freshness-mechanisms => [+ $freshness-mechanism],
 ? supported-suit-cose-profiles => [+ $suit-cose-profile],
 ? challenge => bstr .size (8..512),
 ? versions => [+ version],
 ? suit-reports => [+ SUIT_Report],
 * $$teep-error-extensions,
 * $$teep-option-extensions
 },

Tschofenig, et al. Expires 9 May 2024 [Page 55]

Internet-Draft TEEP Protocol November 2023

 err-code: (0..23)
]

 ; The err-code parameter, uint (0..23)
 ERR_PERMANENT_ERROR = 1
 ERR_UNSUPPORTED_EXTENSION = 2
 ERR_UNSUPPORTED_FRESHNESS_MECHANISMS = 3
 ERR_UNSUPPORTED_MSG_VERSION = 4
 ERR_UNSUPPORTED_CIPHER_SUITES = 5
 ERR_BAD_CERTIFICATE = 6
 ERR_ATTESTATION_REQUIRED = 7
 ERR_UNSUPPORTED_SUIT_REPORT = 8
 ERR_CERTIFICATE_EXPIRED = 9
 ERR_TEMPORARY_ERROR = 10
 ERR_MANIFEST_PROCESSING_FAILED = 17

 ; labels of mapkey for teep message parameters, uint (0..23)
 supported-teep-cipher-suites = 1
 challenge = 2
 versions = 3
 supported-suit-cose-profiles = 4
 selected-version = 6
 attestation-payload = 7
 tc-list = 8
 ext-list = 9
 manifest-list = 10
 msg = 11
 err-msg = 12
 attestation-payload-format = 13
 requested-tc-list = 14
 unneeded-manifest-list = 15
 component-id = 16
 tc-manifest-sequence-number = 17
 have-binary = 18
 suit-reports = 19
 token = 20
 supported-freshness-mechanisms = 21
 err-code = 23

D. Examples of Diagnostic Notation and Binary Representation

 This section includes some examples with the following assumptions:

 * The device will have two TCs with the following SUIT Component
 Identifiers:

 - [0x000102030405060708090a0b0c0d0e0f]

Tschofenig, et al. Expires 9 May 2024 [Page 56]

Internet-Draft TEEP Protocol November 2023

 - [0x100102030405060708090a0b0c0d0e0f]

 * SUIT manifest-list is set empty only for example purposes (see
 Appendix E for actual manifest examples)

D.1. QueryRequest Message

D.1.1. CBOR Diagnostic Notation

 / query-request = /
 [
 / type: / 1 / TEEP-TYPE-query-request /,
 / options: /
 {
 / token / 20 : h’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’,
 / versions / 3 : [0] / 0 is current TEEP Protocol /
 },
 / supported-teep-cipher-suites: / [
 [[18, -7]] / Sign1 using ES256 /,
 [[18, -8]] / Sign1 using EdDSA /
],
 / supported-suit-cose-profiles: / [
 [-16, -7, -25, -65534] / suit-sha256-es256-ecdh-a128ctr /,
 [-16, -8, -25, -65534] / suit-sha256-eddsa-ecdh-a128ctr /,
 [-16, -7, -25, 1] / suit-sha256-es256-ecdh-a128gcm /,
 [-16, -8, -25, 24] / suit-sha256-eddsa-ecdh-chacha-poly /
],
 / data-item-requested: / 3 / attestation | trusted-components /
]

D.1.2. CBOR Binary Representation

Tschofenig, et al. Expires 9 May 2024 [Page 57]

Internet-Draft TEEP Protocol November 2023

 85 # array(5)
 01 # unsigned(1) / TEEP-TYPE-query-request /
 A2 # map(2)
 14 # unsigned(20) / token: /
 50 # bytes(16)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 03 # unsigned(3) / versions: /
 81 # array(1) / [0] /
 00 # unsigned(0)
 82 # array(2) / supported-teep-cipher-suites /
 81 # array(1)
 82 # array(2)
 12 # unsigned(18) / cose-sign1 /
 26 # negative(6) / -7 = cose-alg-es256 /
 81 # array(1)
 82 # array(2)
 12 # unsigned(18) / cose-sign1 /
 27 # negative(7) / -8 = cose-alg-eddsa /
 84 # array(4) / supported-suit-cose-profiles /
 84 # array(4) / suit-sha256-es256-ecdh-a128ctr /,
 2f # negative(15) / -16 = SHA-256 /
 26 # negative(6) / -7 = ES256 /
 38 18 # negative(24) / -25 = ECDH-ES + HKDF-256 /
 39 fffd # negative(65533) / -65534 = A128CTR /
 84 # array(4) / suit-sha256-eddsa-ecdh-a128ctr /
 2f # negative(15) / -16 = SHA-256 /
 27 # negative(7) / -8 = EdDSA /
 38 18 # negative(24) / -25 = ECDH-ES + HKDF-256 /
 39 fffd # negative(65533) / -65534 = A128CTR /
 84 # array(4) / suit-sha256-es256-ecdh-a128gcm /
 2f # negative(15) / -16 = SHA-256 /
 26 # negative(6) / -7 = ES256 /
 38 18 # negative(24) / -25 = ECDH-ES + HKDF-256 /
 01 # unsigned(1) / A128GCM /
 84 # array(4) / suit-sha256-eddsa-ecdh-chacha-poly /
 2f # negative(15) / -16 = SHA-256 /
 27 # negative(7) / EdDSA /
 38 18 # negative(24) / -25 = ECDH-ES + HKDF-256 /
 18 18 # unsigned(24) / 24 = ChaCha20/Poly1305 /
 03 # unsigned(3) / attestation | trusted-components /

D.2. Entity Attestation Token

 This is shown below in CBOR diagnostic form. Only the payload signed
 by COSE is shown.

D.2.1. CBOR Diagnostic Notation

Tschofenig, et al. Expires 9 May 2024 [Page 58]

Internet-Draft TEEP Protocol November 2023

/ eat-claim-set = /
{
 / cnf / 8: {
 / kid / 3 : h’ba7816bf8f01cfea414140de5dae2223’
 h’b00361a396177a9cb410ff61f20015ad’
 },
 / eat_nonce / 10: h’948f8860d13a463e8e’,
 / ueid / 256: h’0198f50a4ff6c05861c8860d13a638ea’,
 / oemid / 258: h’894823’, / IEEE OUI format OEM ID /
 / hwmodel / 259: h’549dcecc8b987c737b44e40f7c635ce8’
 / Hash of chip model name /,
 / hwversion / 260: ["1.3.4", 1], / Multipartnumeric /
 / manifests / 273: [
 [60, / application/cbor, TO BE REPLACED /
 / with the format value for a /
 / SUIT_Reference once one is allocated /
 { / SUIT_Reference /
 / suit-report-manifest-uri / 1: "https://example.co
m/manifest.cbor",
 / suit-report-manifest-digest / 0:[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes / h’a7fd6593eac32eb4be578278e6540c
5c’
 h’09cfd7d4d234973054833b2b930306
09’
]
 }
]
]
}

D.3. QueryResponse Message

D.3.1. CBOR Diagnostic Notation

Tschofenig, et al. Expires 9 May 2024 [Page 59]

Internet-Draft TEEP Protocol November 2023

/ query-response = /
[
 / type: / 2 / TEEP-TYPE-query-response /,
 / options: /
 {
 / token / 20 : h’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’,
 / selected-version / 6 : 0,
 / attestation-payload / 7 : h’’ / empty only for example purpose /,
 / tc-list / 8 : [
 {
 / system-component-id / 0 : [h’0102030405060708090A0B0C0D0E0F’],
 / suit-parameter-image-digest / 3: << [
 / suit-digest-algorithm-id / -16 / SHA256 /,
 / suit-digest-bytes / h’A7FD6593EAC32EB4BE578278E6540C5C09CFD7D4D234973
054833B2B93030609’
 / SHA256 digest of tc binary /
] >>
 }
]
 }
]

D.3.2. CBOR Binary Representation

82 # array(2)
 02 # unsigned(2) / TEEP-TYPE-query-response /
 A4 # map(4)
 14 # unsigned(20) / token: /
 50 # bytes(16)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 06 # unsigned(6) / selected-version: /
 00 # unsigned(0)
 07 # unsigned(7) / attestation-payload: /
 40 # bytes(0)
 # ""
 08 # unsigned(8) / tc-list: /
 81 # array(1)
 A2 # map(2)
 00 # unsigned(0) / system-component-id: /
 81 # array(1)
 4F # bytes(15)
 0102030405060708090A0B0C0D0E0F
 03 # unsigned(3) / suit-parameter-image-digest: /
 58 24 # bytes(36)
 822F5820A7FD6593EAC32EB4BE578278E6540C5C09CFD7D4D234973054833B2B93
030609

Tschofenig, et al. Expires 9 May 2024 [Page 60]

Internet-Draft TEEP Protocol November 2023

D.4. Update Message

D.4.1. CBOR Diagnostic Notation

/ update = /
[
 / type: / 3 / TEEP-TYPE-update /,
 / options: /
 {
 / token / 20 : h’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’,
 / manifest-list / 10 : [
 <<
 / SUIT_Envelope / {
 / suit-authentication-wrapper / 2: << [
 << [
 / suit-digest-algorithm-id: / -16 / suit-cose-alg-sha256 /,
 / suit-digest-bytes: / h’DB601ADE73092B58532CA03FBB663DE49532435336
F1558B49BB622726A2FEDD’
] >>,
 << / COSE_Sign1_Tagged / 18([
 / protected: / << {
 / algorithm-id / 1: -7 / ES256 /
 } >>,
 / unprotected: / {},
 / payload: / null,
 / signature: / h’5B2D535A2B6D5E3C585C1074F414DA9E10BD285C99A33916DA
DE3ED38812504817AC48B62B8E984EC622785BD1C411888BE531B1B594507816B201F6F28579A4’
]) >>
] >>,
 / suit-manifest / 3: << {
 / suit-manifest-version / 1: 1,
 / suit-manifest-sequence-number / 2: 3,
 / suit-common / 3: << {
 / suit-components / 2: [
 [
 h’544545502D446576696365’, / "TEEP-Device" /
 h’5365637572654653’, / "SecureFS" /
 h’8D82573A926D4754935332DC29997F74’, / tc-uuid /
 h’7461’ / "ta" /
]
],
 / suit-common-sequence / 4: << [
 / suit-directive-override-parameters / 20, {
 / suit-parameter-vendor-identifier / 1: h’C0DDD5F15243566087DB4
F5B0AA26C2F’,
 / suit-parameter-class-identifier / 2: h’DB42F7093D8C55BAA8C526
5FC5820F4E’,
 / suit-parameter-image-digest / 3: << [
 / suit-digest-algorithm-id: / -16 / suit-cose-alg-sha256 /,
 / suit-digest-bytes: / h’8CF71AC86AF31BE184EC7A05A411A8C3A14F
D9B77A30D046397481469468ECE8’
] >>,
 / suit-parameter-image-size / 14: 20

Tschofenig, et al. Expires 9 May 2024 [Page 61]

Internet-Draft TEEP Protocol November 2023

 },
 / suit-condition-vendor-identifier / 1, 15,
 / suit-condition-class-identifier / 2, 15
] >>
 } >>,
 / suit-install / 9: << [
 / suit-directive-override-parameters / 20, {
 / suit-parameter-uri / 21: "https://example.org/8d82573a-926d-475
4-9353-32dc29997f74.ta"
 },
 / suit-directive-fetch / 21, 15,
 / suit-condition-image-match / 3, 15
] >>
 } >>
 }
 >>
] / array of bstr wrapped SUIT_Envelope /
 }
]

D.4.2. CBOR Binary Representation

82 # array(2)
 03 # unsigned(3) / TEEP-TYPE-update /
 A2 # map(2)
 14 # unsigned(20) / token: /
 50 # bytes(16)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 0A # unsigned(10) / manifest-list: /
 81 # array(1)
 59 014E # bytes(336)
 A2025873825824822F5820DB601ADE73092B58532CA03FBB663DE495
 32435336F1558B49BB622726A2FEDD584AD28443A10126A0F658405B2D53
 5A2B6D5E3C585C1074F414DA9E10BD285C99A33916DADE3ED38812504817
 AC48B62B8E984EC622785BD1C411888BE531B1B594507816B201F6F28579
 A40358D4A401010203035884A20281844B544545502D4465766963654853
 65637572654653508D82573A926D4754935332DC29997F74427461045854
 8614A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42F7093D8C55
 BAA8C5265FC5820F4E035824822F58208CF71AC86AF31BE184EC7A05A411
 A8C3A14FD9B77A30D046397481469468ECE80E14010F020F0958458614A1
 15783B68747470733A2F2F6578616D706C652E6F72672F38643832353733
 612D393236642D343735342D393335332D3332646332393939376637342E
 7461150F030F

D.5. Success Message

D.5.1. CBOR Diagnostic Notation

Tschofenig, et al. Expires 9 May 2024 [Page 62]

Internet-Draft TEEP Protocol November 2023

 / teep-success = /
 [
 / type: / 5 / TEEP-TYPE-teep-success /,
 / options: /
 {
 / token / 20 : h’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’
 }
]

D.5.2. CBOR Binary Representation

 82 # array(2)
 05 # unsigned(5) / TEEP-TYPE-teep-success /
 A1 # map(1)
 14 # unsigned(20) / token: /
 50 # bytes(16)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

D.6. Error Message

D.6.1. CBOR Diagnostic Notation

 / teep-error = /
 [
 / type: / 6 / TEEP-TYPE-teep-error /,
 / options: /
 {
 / token / 20 : h’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’,
 / err-msg / 12 : "disk-full"
 },
 / err-code: / 17 / ERR_MANIFEST_PROCESSING_FAILED /
]

D.6.2. CBOR binary Representation

 83 # array(3)
 06 # unsigned(6) / TEEP-TYPE-teep-error /
 A2 # map(2)
 14 # unsigned(20) / token: /
 50 # bytes(16)
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF
 0C # unsigned(12) / err-msg: /
 69 # text(9)
 6469736B2D66756C6C # "disk-full"
 11 # unsigned(17) / ERR_MANIFEST_PROCESSING_FAILED /

Tschofenig, et al. Expires 9 May 2024 [Page 63]

Internet-Draft TEEP Protocol November 2023

E. Examples of SUIT Manifests

 This section shows some examples of SUIT manifests described in
 Section 4.4.

 The examples are signed using the following ECDSA secp256r1 key with
 SHA256 as the digest function.

 COSE_Sign1 Cryptographic Key:

 -----BEGIN PRIVATE KEY-----
 MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgApZYjZCUGLM50VBC
 CjYStX+09jGmnyJPrpDLTz/hiXOhRANCAASEloEarguqq9JhVxie7NomvqqL8Rtv
 P+bitWWchdvArTsfKktsCYExwKNtrNHXi9OB3N+wnAUtszmR23M4tKiW
 -----END PRIVATE KEY-----

 The corresponding public key can be used to verify these examples:

 -----BEGIN PUBLIC KEY-----
 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhJaBGq4LqqvSYVcYnuzaJr6qi/Eb
 bz/m4rVlnIXbwK07HypLbAmBMcCjbazR14vTgdzfsJwFLbM5kdtzOLSolg==
 -----END PUBLIC KEY-----

Example 1: SUIT Manifest pointing to URI of the Trusted Component Binary

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {
 / authentication-wrapper / 2: << [
 << [
 / digest-algorithm-id: / -16 / SHA256 /,
 / digest-bytes: / h’EF53C7F719CB10041233850AE3211D62CEC9528924E656607688E77
BC14886A0’
] >>,
 << / COSE_Sign1_Tagged / 18([
 / protected: / << {
 / algorithm-id / 1: -7 / ES256 /
 } >>,
 / unprotected: / {},
 / payload: / null,
 / signature: / h’7E367F9E124859473FBDF3D6312AA8943617B41AE4782FCA0E77A492C5
1F8A7252EA42C23D722E787AA235B5175DBE61DDF8F16F956E0317B9550A04BF9165DD’
]) >>
] >>,
 / manifest / 3: << {
 / manifest-version / 1: 1,
 / manifest-sequence-number / 2: 3,
 / common / 3: << {
 / components / 2: [
 [

Tschofenig, et al. Expires 9 May 2024 [Page 64]

Internet-Draft TEEP Protocol November 2023

 ’TEEP-Device’,
 ’SecureFS’,
 h’8D82573A926D4754935332DC29997F74’, / tc-uuid /
 ’ta’
]
],
 / shared-sequence / 4: << [
 / directive-override-parameters / 20, {
 / parameter-vendor-identifier / 1: h’C0DDD5F15243566087DB4F5B0AA26C2F’,
 / parameter-class-identifier / 2: h’DB42F7093D8C55BAA8C5265FC5820F4E’,
 / parameter-image-digest / 3: << [
 / digest-algorithm-id: / -16 / SHA256 /,
 / digest-bytes: / h’8CF71AC86AF31BE184EC7A05A411A8C3A14FD9B77A30D0463
97481469468ECE8’
] >>,
 / parameter-image-size / 14: 20
 },
 / condition-vendor-identifier / 1, 15,
 / condition-class-identifier / 2, 15
] >>
 } >>,
 / manifest-component-id / 5: [
 ’TEEP-Device’,
 ’SecureFS’,
 h’8D82573A926D4754935332DC29997F74’, / tc-uuid /
 ’suit’
],
 / install / 17: << [
 / directive-override-parameters / 20, {
 / parameter-uri / 21: "https://example.org/8d82573a-926d-4754-9353-32dc29
997f74.ta"
 },
 / directive-fetch / 21, 15,
 / condition-image-match / 3, 15
] >>,
 / uninstall / 24: << [
 / directive-unlink / 33, 15
] >>
 } >>
}

CBOR Binary in Hex

Tschofenig, et al. Expires 9 May 2024 [Page 65]

Internet-Draft TEEP Protocol November 2023

 A2025873825824822F5820EF53C7F719CB10041233850AE3211D62CEC952
 8924E656607688E77BC14886A0584AD28443A10126A0F658407E367F9E12
 4859473FBDF3D6312AA8943617B41AE4782FCA0E77A492C51F8A7252EA42
 C23D722E787AA235B5175DBE61DDF8F16F956E0317B9550A04BF9165DD03
 590108A601010203035884A20281844B544545502D446576696365485365
 637572654653508D82573A926D4754935332DC29997F7442746104585486
 14A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42F7093D8C55BA
 A8C5265FC5820F4E035824822F58208CF71AC86AF31BE184EC7A05A411A8
 C3A14FD9B77A30D046397481469468ECE80E14010F020F05844B54454550
 2D446576696365485365637572654653508D82573A926D4754935332DC29
 997F7444737569741158458614A115783B68747470733A2F2F6578616D70
 6C652E6F72672F38643832353733612D393236642D343735342D39333533
 2D3332646332393939376637342E7461150F030F1818448218210F

Example 2: SUIT Manifest including the Trusted Component Binary

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {
 / authentication-wrapper / 2: << [
 << [
 / digest-algorithm-id: / -16 / SHA256 /,
 / digest-bytes: / h’526A85341DE35AFA4FAF9EDDDA40164525077DC45DFBE25785B9FF4
0683EE881’
] >>,
 << / COSE_Sign1_Tagged / 18([
 / protected: / << {
 / algorithm-id / 1: -7 / ES256 /
 } >>,
 / unprotected: / {},
 / payload: / null,
 / signature: / h’4B57A8102D0D86B83BA0368E118917D87DBF7815DC31B19DEB7E154F3D
191A1434ADFAE27D5AED39C07A2A4B2A0D78031E73B23D679507C4953DD9E00CA7E541’
]) >>
] >>,
 / manifest / 3: << {
 / manifest-version / 1: 1,
 / manifest-sequence-number / 2: 3,
 / common / 3: << {
 / components / 2: [
 [
 ’TEEP-Device’,
 ’SecureFS’,
 h’8D82573A926D4754935332DC29997F74’, / tc-uuid /
 ’ta’
]
],
 / shared-sequence / 4: << [
 / directive-override-parameters / 20, {
 / parameter-vendor-identifier / 1: h’C0DDD5F15243566087DB4F5B0AA26C2F’,

Tschofenig, et al. Expires 9 May 2024 [Page 66]

Internet-Draft TEEP Protocol November 2023

 / parameter-class-identifier / 2: h’DB42F7093D8C55BAA8C5265FC5820F4E’,
 / parameter-image-digest / 3: << [
 / digest-algorithm-id: / -16 / SHA256 /,
 / digest-bytes: / h’8CF71AC86AF31BE184EC7A05A411A8C3A14FD9B77A30D0463
97481469468ECE8’
] >>,
 / parameter-image-size / 14: 20
 },
 / condition-vendor-identifier / 1, 15,
 / condition-class-identifier / 2, 15
] >>
 } >>,
 / manifest-component-id / 5: [
 ’TEEP-Device’,
 ’SecureFS’,
 h’8D82573A926D4754935332DC29997F74’, / tc-uuid /
 ’suit’
],
 / install / 17: << [
 / directive-override-parameters / 20, {
 / uri / 21: "#tc"
 },
 / directive-fetch / 21, 15,
 / condition-image-match / 3, 15
] >>,
 / uninstall / 24: << [
 / directive-unlink / 33, 15
] >>
 } >>,
 "#tc" : ’Hello, Secure World!’
}

CBOR Binary in Hex

 A3025873825824822F5820526A85341DE35AFA4FAF9EDDDA40164525077D
 C45DFBE25785B9FF40683EE881584AD28443A10126A0F658404B57A8102D
 0D86B83BA0368E118917D87DBF7815DC31B19DEB7E154F3D191A1434ADFA
 E27D5AED39C07A2A4B2A0D78031E73B23D679507C4953DD9E00CA7E54103
 58CEA601010203035884A20281844B544545502D44657669636548536563
 7572654653508D82573A926D4754935332DC29997F744274610458548614
 A40150C0DDD5F15243566087DB4F5B0AA26C2F0250DB42F7093D8C55BAA8
 C5265FC5820F4E035824822F58208CF71AC86AF31BE184EC7A05A411A8C3
 A14FD9B77A30D046397481469468ECE80E14010F020F05844B544545502D
 446576696365485365637572654653508D82573A926D4754935332DC2999
 7F744473756974114C8614A11563237463150F030F1818448218210F6323
 74635448656C6C6F2C2053656375726520576F726C6421

Tschofenig, et al. Expires 9 May 2024 [Page 67]

Internet-Draft TEEP Protocol November 2023

Example 3: Supplying Personalization Data for Trusted Component Binary

 This example uses the following parameters:

 * Algorithm for payload encryption: AES-CTR-128

 * Algorithm id for key wrap: ECDH-ES + HKDF-256

 * KEK (Receiver’s Private Key):

 - kty: EC2

 - crv: P-256

 - x: h’5886CD61DD875862E5AAA820E7A15274C968A9BC96048DDCACE32F50C3
 651BA3’

 - y: h’9EED8125E932CD60C0EAD3650D0A485CF726D378D1B016ED4298B2961E
 258F1B’

 - d: h’60FE6DD6D85D5740A5349B6F91267EEAC5BA81B8CB53EE249E4B4EB102
 C476B3’

 * COSE_KDF_Context

 - AlgorithmID: -65534 (A128CTR)

 - SuppPubInfo

 o keyDataLength: 128

 o protected: << {/ alg / 1: -25 / ECDH-ES+HKDF-256 / } >>

 o other: ’SUIT Payload Encryption’

CBOR Diagnostic Notation of SUIT Manifest

/ SUIT_Envelope / {
 / authentication-wrapper / 2: << [
 << [
 / digest-algorithm-id: / -16 / SHA256 /,
 / digest-bytes: / h’0936A4CF3A75D96B43BF88FA6AFA4220800EDC20C32B489BAAAF02E
F72438A26’
] >>,
 << / COSE_Sign1_Tagged / 18([
 / protected: / << {
 / algorithm-id / 1: -7 / ES256 /
 } >>,
 / unprotected: / {},

Tschofenig, et al. Expires 9 May 2024 [Page 68]

Internet-Draft TEEP Protocol November 2023

 / payload: / null,
 / signature: / h’104D09EE04B4B10D67A6CA9D9C638044FE4F09B870CADFBA191997749D
43C30BD15E01240FA6B681280769BAA090C0234B7BECD4008C2AD9D35E4349C56C07DC’
]) >>
] >>,
 / manifest / 3: << {
 / manifest-version / 1: 1,
 / manifest-sequence-number / 2: 3,
 / common / 3: << {
 / dependencies / 1: {
 / component-index / 1: {
 / dependency-prefix / 1: [
 ’TEEP-Device’,
 ’SecureFS’,
 h’8D82573A926D4754935332DC29997F74’, / tc-uuid /
 ’suit’
]
 }
 },
 / components / 2: [
 [
 ’TEEP-Device’,
 ’SecureFS’,
 ’config.json’
]
],
 / shared-sequence / 4: << [
 / directive-set-component-index / 12, 0,
 / directive-override-parameters / 20, {
 / parameter-vendor-identifier / 1: h’C0DDD5F15243566087DB4F5B0AA26C2F’,
 / parameter-class-identifier / 2: h’DB42F7093D8C55BAA8C5265FC5820F4E’
 },
 / condition-vendor-identifier / 1, 15,
 / condition-class-identifier / 2, 15
] >>
 } >>,
 / manifest-component-id / 5: [
 ’TEEP-Device’,
 ’SecureFS’,
 ’config.suit’
],
 / validate / 7: << [
 / directive-set-component-index / 12, 0,
 / directive-override-parameters / 20, {
 / NOTE: image-digest and image-size of plaintext config.json /
 / parameter-image-digest / 3: << [
 / digest-algorithm-id: / -16 / SHA256 /,
 / digest-bytes: / h’8273468FB64BD84BB04825F8371744D952B751C73A60F455AF6
81E167726F116’
] >>,

Tschofenig, et al. Expires 9 May 2024 [Page 69]

Internet-Draft TEEP Protocol November 2023

 / image-size / 14: 61
 },
 / condition-image-match / 3, 15
] >>,
 / dependency-resolution / 15: << [
 / directive-set-component-index / 12, 1,
 / directive-override-parameters / 20, {
 / parameter-image-digest / 3: << [
 / algorithm-id / -16 / SHA256 /,
 / digest-bytes / h’EF53C7F719CB10041233850AE3211D62CEC9528924E656607688
E77BC14886A0’
] >>,
 / parameter-image-size / 14: 389,
 / uri / 21: "https://example.org/8d82573a-926d-4754-9353-32dc29997f74.sui
t"
 },
 / directive-fetch / 21, 2,
 / directive-process-dependency / 11, 15
] >>,
 / install / 17: << [
 / directive-set-component-index / 12, 1,
 / directive-process-dependency / 11, 0,

 / NOTE: fetch encrypted firmware /
 / directive-set-component-index / 12, 0,
 / directive-override-parameters / 20, {
 / NOTE: encrypted payload and encryption-info /
 / parameter-content / 18: h’8E8E6E4C63DEC2B1EC68720EBDF9636B9409485C296EF
68EB79F93CCB1A1B136DD227BAC33CFD93F7A98F1CD020E559B8EBC33CE7C5009A47EB3D11574’,
 / parameter-encryption-info / 19: << 96([
 / protected: / << {
 / alg / 1: -65534 / A128CTR /
 } >>,
 / unprotected: / {
 / IV / 5: h’6CE59E41746D36492CAFCB9E3C2E85A2’
 },
 / payload: / null / detached ciphertext /,
 / recipients: / [
 [
 / protected: / << {
 / alg / 1: -25 / ECDH-ES + HKDF-256 /
 } >>,
 / unprotected: / {
 / ephemeral key / -1: {
 / kty / 1: 2 / EC2 /,
 / crv / -1: 1 / P-256 /,
 / x / -2: h’C32A41E1853B16DA0319654C438EA6882BB119670C8F1C84980
CDFD1BBDB60E3’,
 / y / -3: h’764A34B5D63F800A46384BA6474BA8C7FEEE7CCF9C74B84C9E2
E4CF62C00A235’
 }
 },
 / payload: / h’’

Tschofenig, et al. Expires 9 May 2024 [Page 70]

Internet-Draft TEEP Protocol November 2023

]
]
]) >>
 },

 / decrypt encrypted firmware /
 / directive-write / 18, 15 / consumes the SUIT_Encryption_Info above /
 / NOTE: decrypted payload would be ‘‘{"name":"FOO Bar","secret":"0123456789
abfcdef0123456789abcd"}’’ /
] >>,
 / uninstall / 24: << [
 / directive-set-component-index / 12, 1,
 / directive-process-dependency / 11, 0,
 / directive-set-component-index / 12, 0,
 / directive-unlink / 33, 15
] >>
 } >>
}

CBOR Binary in Hex

 A2025873825824822F58200936A4CF3A75D96B43BF88FA6AFA4220800EDC
 20C32B489BAAAF02EF72438A26584AD28443A10126A0F65840104D09EE04
 B4B10D67A6CA9D9C638044FE4F09B870CADFBA191997749D43C30BD15E01
 240FA6B681280769BAA090C0234B7BECD4008C2AD9D35E4349C56C07DC03
 59022CA801010203035886A301A101A101844B544545502D446576696365
 485365637572654653508D82573A926D4754935332DC29997F7444737569
 740281834B544545502D4465766963654853656375726546534B636F6E66
 69672E6A736F6E04582D880C0014A20150C0DDD5F15243566087DB4F5B0A
 A26C2F0250DB42F7093D8C55BAA8C5265FC5820F4E010F020F05834B5445
 45502D4465766963654853656375726546534B636F6E6669672E73756974
 075831860C0014A2035824822F58208273468FB64BD84BB04825F8371744
 D952B751C73A60F455AF681E167726F1160E183D030F0F5874880C0114A3
 035824822F5820EF53C7F719CB10041233850AE3211D62CEC9528924E656
 607688E77BC14886A00E19018515783D68747470733A2F2F6578616D706C
 652E6F72672F38643832353733612D393236642D343735342D393335332D
 3332646332393939376637342E7375697415020B0F1158C08A0C010B000C
 0014A212583D8E8E6E4C63DEC2B1EC68720EBDF9636B9409485C296EF68E
 B79F93CCB1A1B136DD227BAC33CFD93F7A98F1CD020E559B8EBC33CE7C50
 09A47EB3D11574135872D8608445A10139FFFDA105506CE59E41746D3649
 2CAFCB9E3C2E85A2F6818344A1013818A120A401022001215820C32A41E1
 853B16DA0319654C438EA6882BB119670C8F1C84980CDFD1BBDB60E32258
 20764A34B5D63F800A46384BA6474BA8C7FEEE7CCF9C74B84C9E2E4CF62C
 00A23540120F18184A880C010B000C0018210F

F. Examples of SUIT Reports

 This section shows some examples of SUIT reports.

Tschofenig, et al. Expires 9 May 2024 [Page 71]

Internet-Draft TEEP Protocol November 2023

F.1. Example 1: Success

 SUIT Reports have no records if no conditions have failed. The URI
 in this example is the reference URI provided in the SUIT manifest.

 {
 / suit-report-manifest-digest / 1:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes / h’a7fd6593eac32eb4be578278e6540c5c’
 h’09cfd7d4d234973054833b2b93030609’
]>>,
 / suit-report-manifest-uri / 2: "tam.teep.example/personalisation",
 / suit-report-records / 4: []
 }

F.2. Example 2: Faiure

{
 / suit-report-manifest-digest / 1:<<[
 / algorithm-id / -16 / "sha256" /,
 / digest-bytes / h’a7fd6593eac32eb4be578278e6540c5c09cfd7d4d234973054833b2b93
030609’
]>>,
 / suit-report-manifest-uri / 2: "tam.teep.example/personalisation",
 / suit-report-records / 4: [
 {
 / suit-record-manifest-id / 1:[],
 / suit-record-manifest-section / 2: 7 / dependency-resolution /,
 / suit-record-section-offset / 3: 66,
 / suit-record-dependency-index / 5: 0,
 / suit-record-failure-reason / 6: 404
 }
]
}

 where the dependency-resolution refers to:

Tschofenig, et al. Expires 9 May 2024 [Page 72]

Internet-Draft TEEP Protocol November 2023

 {
 authentication-wrapper,
 / manifest / 3:<<{
 / manifest-version / 1:1,
 / manifest-sequence-number / 2:3,
 common,
 dependency-resolution,
 install,
 validate,
 run,
 text
 }>>,
 }

 and the suit-record-section-offset refers to:

 <<[
 / directive-set-dependency-index / 13,0,
 / directive-set-parameters / 19,{
 / uri / 21:’tam.teep.example/’
 ’edd94cd8-9d9c-4cc8-9216-b3ad5a2d5b8a’,
 } ,
 / directive-fetch / 21,2,
 / condition-image-match / 3,15
]>>,

Authors’ Addresses

 Hannes Tschofenig
 Austria
 Email: hannes.tschofenig@gmx.net

 Mingliang Pei
 Broadcom
 United States of America
 Email: mingliang.pei@broadcom.com

 David Wheeler
 Amazon
 United States of America
 Email: davewhee@amazon.com

 Dave Thaler
 Microsoft
 United States of America

Tschofenig, et al. Expires 9 May 2024 [Page 73]

Internet-Draft TEEP Protocol November 2023

 Email: dave.thaler.ietf@gmail.com

 Akira Tsukamoto
 ALAXALA Networks Corp.
 Japan
 Email: akira.tsukamoto@alaxala.com

Tschofenig, et al. Expires 9 May 2024 [Page 74]

