
TEEP WG D. Thaler
Internet-Draft Microsoft
Intended status: Standards Track 27 March 2023
Expires: 28 September 2023

 HTTP Transport for Trusted Execution Environment Provisioning: Agent
 Initiated Communication
 draft-ietf-teep-otrp-over-http-15

Abstract

 The Trusted Execution Environment Provisioning (TEEP) Protocol is
 used to manage code and configuration data in a Trusted Execution
 Environment (TEE). This document specifies the HTTP transport for
 TEEP communication where a Trusted Application Manager (TAM) service
 is used to manage code and data in TEEs on devices that can initiate
 communication to the TAM.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thaler Expires 28 September 2023 [Page 1]

Internet-Draft TEEP HTTP Transport March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. TEEP Broker . 4
 3.1. Use of Abstract APIs 5
 4. Use of HTTP as a Transport 5
 5. TEEP/HTTP Client Behavior 6
 5.1. Receiving a request to install a new Trusted
 Application . 6
 5.1.1. Session Creation 7
 5.2. Receiving a notification that a Trusted Application is no
 longer needed . 7
 5.3. Getting a TAM URI and message back from a TEEP Agent . . 8
 5.4. Receiving an HTTP response 8
 5.5. Handling checks for policy changes 9
 5.6. Error handling . 10
 6. TEEP/HTTP Server Behavior 10
 6.1. Receiving an HTTP POST request 10
 6.2. Getting an empty message back from the TAM 11
 6.3. Getting a message from the TAM 11
 6.4. Error handling . 11
 7. Sample message flow . 11
 8. Security Considerations 13
 9. IANA Considerations . 13
 10. References . 13
 10.1. Normative References 13
 10.2. Informative References 14
 Author’s Address . 14

1. Introduction

 A Trusted Execution Environment (TEE) is an environment that enforces
 that any code within that environment cannot be tampered with, and
 that any data used by such code cannot be read or tampered with by
 any code outside that environment. The Trusted Execution Environment
 Provisioning (TEEP) protocol is designed to provision authorized code
 and configuration into TEEs.

Thaler Expires 28 September 2023 [Page 2]

Internet-Draft TEEP HTTP Transport March 2023

 To be secure against malware, a TEEP implementation (referred to as a
 TEEP "Agent" on the client side is expected to run inside a TEE, and
 a "Trusted Application Manager (TAM)" on the server side) might or
 might not run inside a TEE. However, the transport for TEEP, along
 with the underlying TCP/IP stack, does not necessarily run inside a
 TEE. This split allows the set of highly trusted code to be kept as
 small as possible, including allowing code (e.g., TCP/IP or QUIC
 [RFC9000]) that only sees encrypted messages, to be kept out of the
 TEE. See section 6.2 of [I-D.ietf-teep-architecture] for a depiction
 of various implementation models.

 The TEEP specification [I-D.ietf-teep-protocol] describes the
 behavior of TEEP Agents and TAMs, but does not specify the details of
 the transport. The purpose of this document is to provide such
 details. That is, a TEEP-over-HTTP (TEEP/HTTP) implementation
 delivers messages up to a TEEP implementation, and accepts messages
 from the TEEP implementation to be sent over a network. The TEEP-
 over-HTTP implementation can be implemented either outside a TEE
 (i.e., in a TEEP "Broker") or inside a TEE.

 There are two topological scenarios (among others) in which TEEP
 could be deployed:

 1. TAMs are reachable on the Internet, and Agents are on networks
 that might be behind a firewall or stateful NAT, so that
 communication must be initiated by an Agent. Thus, the Agent has
 an HTTP Client and the TAM has an HTTP Server.

 2. Agents are reachable on the Internet, and TAMs are on networks
 that might be behind a firewall or stateful NAT, so that
 communication must be initiated by a TAM. Thus, the Agent has an
 HTTP Server and the TAM has an HTTP Client.

 The remainder of this document focuses primarily on the first
 scenario as depicted in Figure 1, but some sections (Section 4 and
 Section 8) may apply to the second scenario as well. A more complete
 discussion of the second scenario may be handled by a separate
 document.

Thaler Expires 28 September 2023 [Page 3]

Internet-Draft TEEP HTTP Transport March 2023

 +------------------+ TEEP +------------------+
 | TEEP Agent | <----------------------> | TAM |
 +------------------+ +------------------+
 | |
 +------------------+ TEEP-over-HTTP +------------------+
 | TEEP/HTTP Client | <----------------------> | TEEP/HTTP Server |
 +------------------+ +------------------+
 | |
 +------------------+ HTTP +------------------+
 | HTTP Client | <----------------------> | HTTP Server |
 +------------------+ +------------------+

 Figure 1: Agent Initiated Communication

 This document specifies the middle layer (TEEP-over-HTTP), whereas
 the top layer (TEEP) is specified in [I-D.ietf-teep-protocol] and the
 bottom layer (HTTP) is specified in [RFC9110].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document also uses various terms defined in
 [I-D.ietf-teep-architecture], including Trusted Execution Environment
 (TEE), Trusted Application (TA), Trusted Application Manager (TAM),
 TEEP Agent, TEEP Broker, and Rich Execution Environment (REE).

3. TEEP Broker

 Section 6 of the TEEP architecture [I-D.ietf-teep-architecture]
 defines a TEEP "Broker" as being a component on the device, but
 outside the TEE, that facilitates communication with a TAM. That
 document further explains that the protocol layer at which the TEEP
 broker operates may vary by implementation, and it depicts several
 exemplary models. An implementation is free to choose any of these
 models, although model A is the one we will use in our examples.

 Passing information from an REE component to a TEE component is
 typically spoken of as being passed "in" to the TEE, and information
 passed in the opposite direction is spoken of as being passed "out".
 In the protocol layering sense, information is typically spoken of as
 being passed "up" or "down" the stack. Since the layer at which
 information is passed in/out may vary by implementation, we will
 generally use "up" and "down" in this document.

Thaler Expires 28 September 2023 [Page 4]

Internet-Draft TEEP HTTP Transport March 2023

3.1. Use of Abstract APIs

 This document refers to various APIs between a TEEP implementation
 and a TEEP/HTTP implementation in the abstract, meaning the literal
 syntax and programming language are not specified, so that various
 concrete APIs can be designed (outside of the IETF) that are
 compliant.

 Some TEE architectures (e.g., SGX) may support API calls both into
 and out of a TEE. In other TEE architectures, there may be no calls
 out from a TEE, but merely data returned from calls into a TEE. This
 document attempts to be agnostic as to the concrete API architecture
 for Broker/Agent communication. Since in model A, the Broker/Agent
 communication is done at the layer between the TEEP and TEEP/HTTP
 implementations, and there may be some architectures that do not
 support calls out of the TEE (which would be downcalls from TEEP in
 model A), we will refer to passing information up to the TEEP
 implementation as API calls, but will simply refer to "passing data"
 back down from a TEEP implementation. A concrete API might pass data
 back via an API downcall or via data returned from an API upcall.

 This document will also refer to passing "no" data back out of a TEEP
 implementation. In a concrete API, this might be implemented by not
 making any downcall, or by returning 0 bytes from an upcall, for
 example.

4. Use of HTTP as a Transport

 This document uses HTTP [RFC9110] as a transport. For the motivation
 behind the HTTP recommendations in this document, see the discussion
 of HTTP as a transport in [RFC9205].

 Redirects MUST NOT be automatically followed. Cookies are not used.

 Content is not intended to be treated as active by browsers and so
 HTTP responses with content MUST have the following header fields as
 explained in Section 4.13 of [RFC9205] (using the TEEP media type
 defined in [I-D.ietf-teep-protocol]):

 Content-Type: application/teep+cbor
 X-Content-Type-Options: nosniff
 Content-Security-Policy: default-src ’none’
 Referrer-Policy: no-referrer

 Only the POST method is specified for TAM resources exposed over
 HTTP. Since POST responses without explicit freshness information
 are uncacheable (see Section 9.3.3 of [RFC9110]), the Cache-Control
 header MUST NOT be used.

Thaler Expires 28 September 2023 [Page 5]

Internet-Draft TEEP HTTP Transport March 2023

 A URI of such a resource is referred to as a "TAM URI". A TAM URI
 can be any HTTP(S) URI. The URI to use is configured in a TEEP Agent
 via an out-of-band mechanism, as discussed in the next section.

 It is RECOMMENDED that implementations use HTTPS. Although TEEP is
 protected end-to-end inside of HTTP, there is still value in using
 HTTPS for transport, since HTTPS can provide additional protections
 as discussed in Section 6 of [RFC9205].

 However, there may be constrained nodes where code space is an issue.
 [RFC7925] provides TLS profiles that can be used in many constrained
 nodes, but in rare cases the most constrained nodes might need to use
 HTTP without a TLS stack, relying on the end-to-end security provided
 by the TEEP protocol. See Sections 4.4.2 and 6 of [RFC9205] for more
 discussion of additional security considerations that apply in this
 case.

 When HTTPS is used, clients MUST use the procedures detailed in
 Section 4.3.4 of [RFC9110] to verify the authenticity of the server.
 See [BCP195] for additional TLS recommendations and [RFC7925] for TLS
 recommendations related to IoT devices.

5. TEEP/HTTP Client Behavior

5.1. Receiving a request to install a new Trusted Application

 In some environments, an application installer can determine (e.g.,
 from an application manifest) that the application being installed or
 updated has a dependency on a given Trusted Application (TA) being
 available in a given type of TEE. In such a case, it will notify a
 TEEP Broker, where the notification will contain the following:

 * A unique identifier of the TA

 * Optionally, any metadata to provide to the TEEP Agent. This might
 include a TAM URI provided in the application manifest, for
 example.

 * Optionally, any requirements that may affect the choice of TEE, if
 multiple are available to the TEEP Broker.

 When a TEEP Broker receives such a notification, it first identifies
 in an implementation-dependent way which TEE (if any) is most
 appropriate based on the constraints expressed. If there is only one
 TEE, the choice is obvious. Otherwise, the choice might be based on
 factors such as capabilities of available TEE(s) compared with TEE
 requirements in the notification. Once the TEEP Broker picks a TEE,
 it passes the notification to the TEEP/HTTP Client for that TEE.

Thaler Expires 28 September 2023 [Page 6]

Internet-Draft TEEP HTTP Transport March 2023

 The TEEP/HTTP Client then informs the TEEP Agent in that TEE by
 invoking an appropriate "RequestTA" API that identifies the TA needed
 and any other associated metadata. The TEEP/HTTP Client need not
 know whether the TEE already has such a TA installed or whether it is
 up to date.

 The TEEP Agent will either (a) pass no data back, (b) pass back a TAM
 URI to connect to, or (c) pass back a message and TAM URI to send it
 to. The TAM URI passed back may or may not be the same as the TAM
 URI, if any, provided by the TEEP/HTTP Client, depending on the TEEP
 Agent’s configuration. If they differ, the TEEP/HTTP Client MUST use
 the TAM URI passed back.

5.1.1. Session Creation

 If no data is passed back, the TEEP/HTTP Client simply informs its
 caller (e.g., the application installer) of success.

 If the TEEP Agent passes back a TAM URI with no message, the TEEP/
 HTTP Client attempts to create session state, then sends an HTTP(S)
 POST to the TAM URI with an Accept header field with the TEEP media
 type specified in [I-D.ietf-teep-protocol], and an empty body. The
 HTTP request is then associated with the TEEP/HTTP Client’s session
 state.

 If the TEEP Agent instead passes back a TAM URI with a message, the
 TEEP/HTTP Client attempts to create session state and handles the
 message as specified in Section 5.3.

 Session state consists of:

 * Any context (e.g., a handle) that the TEEP Agent wishes to be
 provided back to it in any later conceptual API calls into it
 related to this session.

 * Any context that identifies an HTTP request, if one is
 outstanding. Initially, none exists.

5.2. Receiving a notification that a Trusted Application is no longer
 needed

 In some environments, an application installer can determine (e.g.,
 from an application manifest) that a given Trusted Application is no
 longer needed, such as if the application that previously depended on
 the TA is uninstalled or updated in a way that removes the
 dependency. In such a case, it will notify a TEEP Broker, where the
 notification will contain the following:

Thaler Expires 28 September 2023 [Page 7]

Internet-Draft TEEP HTTP Transport March 2023

 * A unique identifier of the TA

 * Optionally, any metadata to provide to the TEEP Agent. This might
 include a TAM URI provided in the original application manifest,
 for example.

 * Optionally, any requirements that may affect the choice of TEE, if
 multiple are available to the TEEP Broker.

 When a TEEP Broker receives such a notification, it first identifies
 in an implementation-dependent way which TEE (if any) is believed to
 contain the TA that is no longer needed, similar to the process in
 Section 5.1. Once the TEEP Broker picks a TEE, it passes the
 notification to the TEEP/HTTP Client for that TEE.

 The TEEP/HTTP Client then informs the TEEP Agent in that TEE by
 invoking an appropriate "UnrequestTA" API that identifies the
 unneeded TA. The TEEP/HTTP Client need not know whether the TEE
 actually has the TA installed.

 Finally, the TEEP Agent responds to the TEEP/HTTP Client as in
 Section 5.1. Specifically, the TEEP Agent will either (a) pass no
 data back, (b) pass back a TAM URI to connect to, or (c) pass back a
 message and TAM URI to send it to. The TAM URI passed back may or
 may not be the same as the TAM URI, if any, provided by the TEEP/HTTP
 Client, depending on the TEEP Agent’s configuration. If they differ,
 the TEEP/HTTP Client MUST use the TAM URI passed back.

 Processing then continues as in Section 5.1.1.

5.3. Getting a TAM URI and message back from a TEEP Agent

 When a TEEP Agent passes a TAM URI and optionally a message to a
 TEEP/HTTP Client, the TEEP/HTTP Client MUST do the following, using
 the TEEP/HTTP Client’s session state associated with its API call to
 the TEEP Agent.

 The TEEP/HTTP Client sends an HTTP POST request to the TAM URI with
 Accept and Content-Type header fields with the TEEP media type, and a
 body containing the TEEP message (if any) provided by the TEEP Agent.
 The HTTP request is then associated with the TEEP/HTTP Client’s
 session state.

5.4. Receiving an HTTP response

 When an HTTP response is received in response to a request associated
 with a given session state, the TEEP/HTTP Client MUST do the
 following.

Thaler Expires 28 September 2023 [Page 8]

Internet-Draft TEEP HTTP Transport March 2023

 If the HTTP response body is empty, the TEEP/HTTP Client’s task is
 complete, and it can delete its session state, and its task is done.

 If instead the HTTP response body is not empty, the TEEP/HTTP Client
 passes (e.g., using the "ProcessTeepMessage" API as mentioned in
 Section 6.2.1 of [I-D.ietf-teep-architecture]) the response body up
 to the TEEP Agent associated with the session. The TEEP Agent will
 then either pass no data back, or pass back a message.

 If no data is passed back, the TEEP/HTTP Client’s task is complete,
 and it can delete its session state, and inform its caller (e.g., the
 application installer) of success.

 If instead the TEEP Agent passes back a message, the TEEP/HTTP Client
 handles the message as specified in Section 5.3.

5.5. Handling checks for policy changes

 An implementation MUST provide a way to periodically check for TAM
 policy changes, such as a Trusted Application needing to be deleted
 from a TEE because it is no longer permitted, or needing to be
 updated to a later version. This can be done in any implementation-
 specific manner, such as any of the following or a combination
 thereof:

 A) The TEEP/HTTP Client might call up to the TEEP Agent at an
 interval previously specified by the TEEP Agent. This approach
 requires that the TEEP/HTTP Client be capable of running a periodic
 timer.

 B) The TEEP/HTTP Client might be informed when an existing TA is
 invoked, and call up to the TEEP Agent if more time has passed than
 was previously specified by the TEEP Agent. This approach allows the
 device to go to sleep for a potentially long period of time.

 C) The TEEP/HTTP Client might be informed when any attestation
 attempt determines that the device is out of compliance, and call up
 to the TEEP Agent to remediate.

 The TEEP/HTTP Client informs the TEEP Agent by invoking an
 appropriate "RequestPolicyCheck" API. The TEEP Agent will either (a)
 pass no data back, (b) pass back a TAM URI to connect to, or (c) pass
 back a message and TAM URI to send it to. Processing then continues
 as specified in Section 5.1.1.

Thaler Expires 28 September 2023 [Page 9]

Internet-Draft TEEP HTTP Transport March 2023

 The TEEP Agent might need to talk to multiple TAMs, however, as shown
 in Figure 1 of [I-D.ietf-teep-architecture]. To accomplish this, the
 TEEP/HTTP Client keeps invoking the "RequestPolicyCheck" API until
 the TEEP Agent passes no data back, so that the TEEP Agent can return
 each TAM URI in response to a separate API call.

5.6. Error handling

 If any local error occurs where the TEEP/HTTP Client cannot get a
 message (empty or not) back from the TEEP Agent, the TEEP/HTTP Client
 deletes its session state, and informs its caller (if any, e.g., the
 application installer) of a failure. Note that no timeout check is
 used at the TEEP/HTTP Client layer; any timeout would be done inside
 the TEEP Agent.

 If any HTTP request results in an HTTP error response or a lower
 layer error (e.g., network unreachable), the TEEP/HTTP Client calls
 the TEEP Agent’s "ProcessError" API, and then deletes its session
 state and informs its caller of a failure.

6. TEEP/HTTP Server Behavior

6.1. Receiving an HTTP POST request

 If the TAM does not receive the appropriate Content-Type header field
 value, the TAM SHOULD fail the request, returning a 415 Unsupported
 Media Type response. Similarly, if an appropriate Accept header
 field is not present, the TAM SHOULD fail the request with an
 appropriate error response. (This is for consistency with common
 implementation practice to allow the HTTP server to choose a default
 error response, since in some implementations the choice is done at
 the HTTP layer rather than the layer at which TEEP-over-HTTP would be
 implemented.) Otherwise, processing continues as follows.

 When an HTTP POST request is received with an empty body, this
 indicates a request for a new TEEP session, and the TEEP/HTTP Server
 invokes the TAM’s "ProcessConnect" API. The TAM will then pass back
 a message.

 When an HTTP POST request is received with a non-empty body, this
 indicates a message on an existing TEEP session, and the TEEP/HTTP
 Server passes the request body to the TAM (e.g., using the
 "ProcessTeepMessage" API mentioned in [I-D.ietf-teep-architecture]).
 The TAM will then pass back a (possibly empty) message.

Thaler Expires 28 September 2023 [Page 10]

Internet-Draft TEEP HTTP Transport March 2023

6.2. Getting an empty message back from the TAM

 If the TAM passes back an empty message, the TEEP/HTTP Server sends a
 successful (2xx) response with no body. It SHOULD be status 204 (No
 Content).

6.3. Getting a message from the TAM

 If the TAM passes back a non-empty message, the TEEP/HTTP Server
 generates a successful (2xx) response with a Content-Type header
 field with the TEEP media type, and with the message as the body.

6.4. Error handling

 If any error occurs where the TEEP/HTTP Server cannot get a message
 (empty or not) back from the TAM, the TEEP/HTTP Server generates an
 appropriate HTTP 5xx error response. Note that no timeout check is
 used at the TEEP/HTTP Client layer; any timeout would be handled
 inside the TEEP Agent.

7. Sample message flow

 The following shows a sample TEEP message flow that uses application/
 teep+cbor as the Content-Type.

 1. An application installer determines (e.g., from an application
 manifest) that the application has a dependency on TA "X", and
 passes this notification to the TEEP Broker. The TEEP Broker
 picks a TEE (e.g., the only one available) based on this
 notification, and passes the information to the TEEP/HTTP Client
 for that TEE.

 2. The TEEP/HTTP Client calls the TEEP Agent’s "RequestTA" API,
 passing TA Needed = X.

 3. The TEEP Agent finds that no such TA is already installed, but
 that it can be obtained from a given TAM. The TEEP Agent passes
 back the TAM URI (e.g., "https://example.com/tam") to the TEEP/
 HTTP Client.

 4. The TEEP/HTTP Client sends an HTTP POST request to the TAM URI:

 POST /tam HTTP/1.1
 Host: example.com
 Accept: application/teep+cbor
 Content-Length: 0
 User-Agent: Foo/1.0

Thaler Expires 28 September 2023 [Page 11]

Internet-Draft TEEP HTTP Transport March 2023

 where the TEEP/HTTP Client fills in an implementation-specific
 value in the User-Agent header field.

 5. On the TAM side, the TEEP/HTTP Server receives the HTTP POST
 request, and calls the TAM’s "ProcessConnect" API.

 6. The TAM generates a TEEP message (where typically QueryRequest
 is the first message) and passes it to the TEEP/HTTP Server.

 7. The TEEP/HTTP Server sends an HTTP successful response with the
 TEEP message in the body:

 HTTP/1.1 200 OK
 Content-Type: application/teep+cbor
 Content-Length: [length of TEEP message here]
 Server: Bar/2.2
 X-Content-Type-Options: nosniff
 Content-Security-Policy: default-src ’none’
 Referrer-Policy: no-referrer

 [TEEP message here]

 where the TEEP/HTTP Server fills in an implementation-specific
 value in the Server header field.

 8. Back on the TEEP Agent side, the TEEP/HTTP Client gets the HTTP
 response, extracts the TEEP message and passes it up to the TEEP
 Agent.

 9. The TEEP Agent processes the TEEP message, and generates a TEEP
 response (e.g., QueryResponse) which it passes back to the TEEP/
 HTTP Client.

 10. The TEEP/HTTP Client gets the TEEP message and sends an HTTP
 POST request to the TAM URI, with the TEEP message in the body:

 POST /tam HTTP/1.1
 Host: example.com
 Accept: application/teep+cbor
 Content-Type: application/teep+cbor
 Content-Length: [length of TEEP message here]
 User-Agent: Foo/1.0

 [TEEP message here]

 11. The TEEP/HTTP Server receives the HTTP POST request, and passes
 the payload up to the TAM.

Thaler Expires 28 September 2023 [Page 12]

Internet-Draft TEEP HTTP Transport March 2023

 12. Steps 6-11 are then repeated until the TAM passes no data back
 to the TEEP/HTTP Server in step 6.

 13. The TEEP/HTTP Server sends an HTTP successful response with no
 body:

 HTTP/1.1 204 No Content
 Server: Bar/2.2

 14. The TEEP/HTTP Client deletes its session state.

8. Security Considerations

 Section 4 discussed security recommendations for HTTPS transport of
 TEEP messages. See Section 6 of [RFC9205] for additional discussion
 of HTTP(S) security considerations. See section 9 of
 [I-D.ietf-teep-architecture] for security considerations specific to
 the use of TEEP. See Section 7 of [RFC3986] for security
 considerations on dereferencing URIs.

9. IANA Considerations

 This document has no actions for IANA.

10. References

10.1. Normative References

 [BCP195] Sheffer, Y., Saint-Andre, P., and T. Fossati,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November
 2022, <https://www.rfc-editor.org/rfc/rfc9325>.

 [I-D.ietf-teep-protocol]
 Tschofenig, H., Pei, M., Wheeler, D. M., Thaler, D., and
 A. Tsukamoto, "Trusted Execution Environment Provisioning
 (TEEP) Protocol", Work in Progress, Internet-Draft, draft-
 ietf-teep-protocol-12, 13 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-teep-
 protocol-12>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

Thaler Expires 28 September 2023 [Page 13]

Internet-Draft TEEP HTTP Transport March 2023

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/rfc/rfc7925>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

10.2. Informative References

 [I-D.ietf-teep-architecture]
 Pei, M., Tschofenig, H., Thaler, D., and D. M. Wheeler,
 "Trusted Execution Environment Provisioning (TEEP)
 Architecture", Work in Progress, Internet-Draft, draft-
 ietf-teep-architecture-19, 24 October 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-teep-
 architecture-19>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9000>.

 [RFC9205] Nottingham, M., "Building Protocols with HTTP", BCP 56,
 RFC 9205, DOI 10.17487/RFC9205, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9205>.

Author’s Address

 Dave Thaler
 Microsoft
 Email: dthaler@microsoft.com

Thaler Expires 28 September 2023 [Page 14]

